Hardness of 4-Colouring 𝐺-Colourable Graphs

Logo poskytovatele

Varování

Publikace nespadá pod Pedagogickou fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

FILAKOVSKÝ Marek AVVAKUMOV Sergey OPRŠAL Jakub TASINATO Gianluca WAGNER Uli

Rok publikování 2025
Druh Článek ve sborníku
Konference STOC '25: Proceedings of the 57th Annual ACM Symposium on Theory of Computing
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www pdf file with the result
Doi https://doi.org/10.1145/3717823.3718154
Klíčová slova graph colouring; constraint satisfaction problems; promise problems; topological methods; equivariant cohomology
Popis We study the complexity of a class of promise graph homomor- phism problems. For a fixed graph ?? , the ?? -colouring problem is to decide whether a given graph has a homomorphism to ?? . By a result of Hell and Nešetřil, this problem is NP-hard for any non- bipartite loop-less graph ?? . Brakensiek and Guruswami [SODA 2018] conjectured the hardness extends to promise graph homo- morphism problems as follows: fix a pair of non-bipartite loop-less graphs ??, ?? such that there is a homomorphism from ?? to ?? , it is NP-hard to distinguish between graphs that are ??-colourable and those that are not ?? -colourable. We confirm this conjecture in the cases when both ?? and ?? are 4-colourable. This is a common gen- eralisation of previous results of Khanna, Linial, and Safra [Comb. 20(3): 393-415 (2000)] and of Krokhin and Opršal [FOCS 2019]. The result is obtained by combining the algebraic approach to promise constraint satisfaction with methods of topological combinatorics and equivariant obstruction theory.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.