On the complexity of the quantified bit-vector arithmetic with binary encoding
| Autoři | |
|---|---|
| Rok publikování | 2018 |
| Druh | Článek v odborném periodiku |
| Časopis / Zdroj | Information Processing Letters |
| Fakulta / Pracoviště MU | |
| Citace | |
| www | https://www.sciencedirect.com/science/article/pii/S0020019018300474 |
| Doi | https://doi.org/10.1016/j.ipl.2018.02.018 |
| Klíčová slova | computational complexity; satisfiability modulo theories; bit-vector theory |
| Popis | We study the precise computational complexity of deciding satisfiability of first-order quantified formulas over the theory of fixed-size bit-vectors with binary-encoded bit-widths and constants. This problem is known to be in EXPSPACE and to be NEXPTIME-hard. We show that this problem is complete for the complexity class AEXP(poly) – the class of problems decidable by an alternating Turing machine using exponential time, but only a polynomial number of alternations between existential and universal states. |
| Související projekty: |