AFM characterization of nanocomposite SAMPLES

Investor logo

Warning

This publication doesn't include Faculty of Education. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

CHARVÁTOVÁ CAMPBELL Anna HAVLÍČEK Marek KLAPETEK Petr BURŠÍKOVÁ Vilma

Year of publication 2021
Type Article in Proceedings
Conference NANOCON 2020: 12th International Conference on Nanomaterials - Research & Application
MU Faculty or unit

Faculty of Science

Citation
Web https://doi.org/10.37904/nanocon.2020.3775
Doi http://dx.doi.org/10.37904/nanocon.2020.3775
Keywords AFM; nanocomposites
Description Nanocomposite polymer coatings combine attractive functionalities from the combination of organic matrix coatings and inorganic nanoparticles which allows to acquire unique properties. They can be tailored for specific needs by modifying optical, mechanical, electronic, magnetic and other properties, which may differ significantly from the properties of the bulk form. In order to study the role of the incorporated nanoparticles, topography is of fundamental importance. Its relation to the deposition parameters, however, is far from trivial. Suitable statistical parameters, which capture the essential traits of the sample but are not oversensitive to local variations are needed. Roughness e.g. is a well-established, popular statistical parameter but is not sufficient to describe the topography. Parameters which describe lateral distances should be included as well. In order to ensure the same processing for multiple samples the data processing should also require as little user input as possible. As a wide range of samples must be characterized, time demands for the characterization of a single sample should also be considered. We present a systematic atomic force microscopy study of a series of nanocomposite polymer coatings with topographies including spherical particles and snake-like structures of different length scales. Different statistical parameters, their dependence on measurement settings and related uncertainties are addressed.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.