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1. Introduction
This text is aimed at students of the part-time and distance study of teaching mathematics for basic schools. As the text gives additional and explanatory information to the basic study literature from this field of study ([1], [3], [7], [8], [9], [10]), there are not given proofs to individual theorems. All proofs can be found in the study literature; here are given references to most of them. For the study of the text there is assumed the knowledge of the algebra basics (set operations and their properties, binary relations and their properties, an ordering relation and ordered sets, an equivalence relation and set decomposition, binary algebraic operations and their properties, algebraic structures and their homomorphisms). We will also use the following standard symbols for number sets:

N – the set of all natural numbers (certainly including number zero)

Z – the set of all integers

Q – the set of all rational numbers

R – the set of all real numbers

C – the set of all complex numbers.

With the sets Z, Q, R we will use, if needed, also symbols Z+, Q+, R+  and  Z(, Q(, R( , denoting the subset of all positive numbers, alternatively negative numbers of the certain number set. If this set includes also number zero, we will add the subscript zero, e.g. 
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First of all we will deal with quotient structures, in the following parts we will continue with constructing the number sets. While talking about natural numbers we will shortly touch upon their notation in non-decimal number bases. It is mostly a formally complicated and rather difficult topic, but a thorough understanding of the substance of all number sets is essential for future teachers. The text is quite detailed, in each chapter there are illustrative “Solved Examples”. At the end of each chapter there are “Examples for Check” with results, the list of basic “Terms to Remember” and several “Concept Questions”. We suggest students that they try to solve the examples and answer the questions themselves. At the end of each chapter there is also some space for student´ s “Notes and Comments” to the study of this chapter. Do not hesitate to ask you teachers.
2. Quotient Structures

Study Guide. In this chapter we will deal with quotient (also proportionate) structures. Although following considerations can seem too abstract, they are very important for understanding the construction of number sets. Generally, there is defined a certain decomposition on the carrier set of an algebraic structure (groupoid, group, ring). On the set of these decomposition classes there is defined a new algebraic operation on the basis of the original algebraic operation (operations), and the set of decomposition classes with this new operation forms a quotient structure of the original structure. First, we will shortly touch upon the construction of quotient groupoids, then, in more details, we will introduce the theory of quotient groups linked with a very important term of an invariant subgroup. In the conclusion, we will shortly describe the construction of a quotient ring based on the notion of an ideal of the original ring. Let us further note that the basic study literature to this topic is [9], where nearly all proofs of given theorems are included. 

Definition 2.1. Let (G, () be a groupoid. Let X, Y ( G. Then a product of sets X, Y is represented by a set X ( Y = {z; z = x ( y; x ( X, y ( Y}. If one of the sets X, Y is a one-element set, e.g. X = {x}, then instead of {x} ( Y we will write only x ( Y or simply xY. 
Definition 2.2. Let (G, () be a groupoid, let (  be a decomposition on the set G. Then we will call (  a creating decomposition on the groupoid G, if for each two classes X, Y ( (  there is a class Z( (  with the property X ( Y (  Z. Let a set X 
[image: image2.wmf]o

Y = Z, then (( ,
[image: image3.wmf]o

) is a groupoid which we call a factoroid of the groupoid G (or shortly a factorgroupoid). A canonical mapping of G to ( , associating each element x ( G with the class X ( ( in which it lies, is a surjective homomorphism which is called a canonical homomorphism. The symbols for operations on the groupoid (G, () and on the factorgroupoid (( ,
[image: image4.wmf]o

) are very often identical.
Example 2.3. Let (G, () be an arbitrary groupoid. Then both the roughest decomposition (1 = {G} and the finest decomposition  ( = {{g}; g ( G} are creating ones.
Definition 2.4. Let (G, () be a groupoid, let (  be an equivalent relation on G. Then (  is a congruence relation on the groupoid (G, (), if
a ( b (  a ( c (  b ( c,  c ( a (  c ( b for arbitrary a, b, c ( G .
We say that in this case the given congruence is a left- and right-stable equivalence on (G, (). 
Theorem 2.5. Let (G, () be a groupoid, let  (  be an equivalence relation on G. Then the following statements are equivalent:

(1) Relation  (  is a congruence on (G, ();

(2) a ( b, c ( d (  a ( c (  b ( d   for arbitrary a, b, c, d ( G .

Proof: See [9], pg. 8.
Theorem 2.6. Let (G, () be a groupoid, let ( be an equivalence relation on G ,let (  be a decomposition on G correspondent with the equivalence ( . Then the relation  (  is a congruence on the groupoid (G, (), if and only if ( is a creating decomposition. 

Proof: See [9], pg. 8.
Solved Example 2.7. Let (Z, +) be a groupoid. Let m be a natural number greater than one. Let us consider the decomposition Zm = {C0 , ..., Cm(1} of the set of all integers to remainder classes modulo m. Decide if the relation congruence modulo m on Z is a congruence in the sense of Theorem 2. 5. and decide if the groupoid (Zm, +) is a factorgroupoid on the groupoid (Z, +). Let us note that for a, b( Z there applies a ( b(mod m), if and only if numbers a, b give the same remainder after being divided by m. 

Solution: We know from the number theory basics that the congruence relation is an equivalent relation and that it is possible to add an arbitrary integer to both sides of the congruence. The congruence relation is thus a left- and right-stable equivalence on the set of all integers and therefore the groupoid (Zm, +) is a factorgroupoid on the groupoid (Z, +).
Theorem 2.8. Let (G, () be a group, let (H, () be a subgroup of the group G. Then {a ( H; a ( G}, or {H ( a; a ( G} are decompositions on G. 

Proof: See [9], pg. 10.

Definition 2.9. Let H be a subgroup of the group G. Then decompositions {a ( H; a ( G}, or {H ( a; a ( G} are called a left or right decomposition of the group G with respect to the subgroup H respectively. The notation: G(l H, G(p H. The class a ( H, or. H ( a  of this decomposition are called the left or right class of the element a with respect to the subgroup H respectively. 
Note 2.10. From the previous there result the following consequences:

1. a ( a ( H, a ( H ( a (because a = a ( e = e ( a, e ( H),

2. H ( G(l H,  H ( G(p H  (because H = e ( H = H ( e),

3. x ( a ( H (  x ( H = a ( H (i.e. each left class is defined by its arbitrary element; similarly for right classes),

4. H ( H = H. 
Theorem 2.11. Let (G, () be a group, let (H, () be a subgroup of the group G, let a, b ( G. Then there applies:

(1) a, b belong to one class G(l H (  a( 1( b ( H,

(2) a, b belong to one class G(p H (  b ( a( 1( H . 

Proof: See [7], pg. 156.
Theorem 2.12. Let (G, () be a group, let (H, () be a subgroup of the group G, let a, b ( G be any elements. Then there exist following bijective mappings f: a(H ( H(a, g: a(H ( b(H,  h: G(l H ( G(p H. 

Proof: See [9], pg. 10.
Note 2.13. The decomposition classes are identically numerous with respect to the given group. All decomposition classes (right and left) are identically numerous with respect to an arbitrary element. The number of classes in the left and right decompositions with respect to the same subgroup is equal. 

Definition 2.14. The subgroup H of the group G is called an invariant subgroup (sometimes also a normal divisor), if for each element a ( G there applies a(H = H(a. 
Theorem 2.15. Let (G, () be a group, let (H, () be a subgroup of the group G. Then the following statements are equivalent:

(1) H is a normal divisor, 

(2) h ( H,  g ( G arbitrary  (    g( 1( h ( g ( H,
(3) g ( G arbitrary  (    g( 1( H ( g = H ,

(4) G(l H = G(p H,
(5) G(l H, G(p H are creating decompositions on the group G.
Proof: See [9], pg. 12.

Note 2.16. If H is a normal divisor in the group G, then G(l H = G(p H. Therefore we use only the notation G( H . Decomposition G( H is a creating decomposition on G. Moreover, let us note that in a commutative group each subgroup is invariant.
Note 2.17. We know from the theory of cyclic groups that the order of a finite group is equal to the number of elements of this group. Further, according to the proved Lagrange Theorem, the order of the finite group is divisible by the order of its each subgroup. Among others it implies that a finite group with a prime number of elements has only two subgroups: a trivial one and itself. For each (finite) subgroup H of the finite group G there further applies that the number of elements in all classes of decompositions G(l H, G(p H is equal to each other, it is equal to the number of elements of the subgroup H, and that the number of classes of decompositions G(l H, G(p H is equal as well.

Definition 2.18. Let H be a subgroup of the finite group G. Then systems G(l H, G(p H have the same number of classes which is called an index of the subgroup H in the group G. 
Theorem 2.19. Let H be a subgroup of the finite group G. Then the order of the group G is a product of the order of the subgroup H and an index of the subgroup H in the group G. (The consequence of it is the Lagrange Theorem.)

Proof: See [9], pg. 11.

Theorem 2.20. Let (H, () be an invariant subgroup of the group (G, (). Then the factorgroupoid (G( H ,
[image: image5.wmf]o

) is a group. The unit element of this group is the class H and for arbitrary x, y ( G there applies:

(x ( H) 
[image: image6.wmf]o

 ( y ( H) = (x ( y) ( H ,              ( x ( H)( 1 = x( 1 ( H .

Proof: See [9], pg. 13.

Definition 2.21. Let (H, () be an invariant subgroup of the group (G, (). Then the factorgroupoid (G( H ,
[image: image7.wmf]o

) is called a factorgroup of the group G with respect to the normal subgroup H. 
Theorem 2.22. All creating decompositions on the group are just the decompositions of the group formed by its invariant subgroups, so the only factorgroupoids of the group are its factorgroups.
Proof: See [9], pg. 14.

Solved Example 2.23. Let G = {1, 2, 3}. By listing its elements determine the set S(G) of all permutations of the set G; further set the operation chart of the group (S(G), o), where o is a permutations composition operation, further determine all its subgroups. 

Solution. S(G) = {e, a, b, c, d, f}, where 
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The operation chart is as follows:
	o  
	e     a     b     c     d     f

	e

a

b

c

d

f
	e     a     b     c     d     f

a     e     d     f     b     c

b     c     e     a     f     d

c     b     f     d     e     a

d     f     a     e     c     b

f     d     c     b     a     e


The group (S(G), o) has following subgroups:

H1 = {e}, H2 = {e, a}, H3 = {e, b}, H4 = {e, f}, H5 = {e, c, d}, H6 = S(G).
Solved Example 2.24. Let us consider the group (S(G),
[image: image14.wmf]o

) of permutations of a three-element set from the previous example. Let us consider two of its subgroups, namely the subgroup H = {e, a} and then the subgroup K = {e, c, d} (where we changed their notations for simplification). Determine the decompositions  S(G)(l H, S(G)(p H, S(G)(l K, S(G)(p K . Further decide if the subgroups H, K are invariant and determine their order and index in the group (S(G),
[image: image15.wmf]o

). 
Solution: 
a) S(G)(l H = {{e, a}, {b, c}, {d, f}}, S(G)(p H = {{e, a}, {b, d}, {c, f}}, i.e. S(G)(l H  (  S(G)(p H. The subgroup H is not invariant. The order of the subgroup H is 2, its index is 3. 
b) S(G)(l K = {{e, c, d}, {a, b, f}},  S(G)(p K = {{e, c, d}, {a, b, f}}, so S(G)(l K = S(G)(p K. The subgroup K is therefore invariant and there applies S(G)( K = {{e, c, d}, {a, b, f}}. The order of the subgroup K is 3, its index is 2. Let us now denote the decomposition classes S(G)( K, e.g. E = {e, c, d}, A = {a, b, f}, then the quotient group (S(G)( K ,
[image: image16.wmf]o

) of the group (S(G),
[image: image17.wmf]o

) is determined by an operation chart:
	o  
	E   A     

	E

A
	E   A     

A   E     

	
	


Definition 2.25. Let (R ,+, () be a ring. A non-empty set I ( R is called an ideal of the ring R, if there applies:

(1) i, j ( I (  i ( j( I,

(2) i ( I, r ( R (  i ( r ( I, r ( i ( I. 
Note 2.26. There applies that (I ,+, () is a subring of the ring (R ,+, () and (I ,+) is an invariant subgroup of the group (R ,+). The decomposition (R ,+)( (I ,+) will be noted R( I. Let us further remark that every ring includes two ideals, namely the zero ideal {0R} and the improper ideal R. 
Theorem 2.27. Let R be a ring, I be its ideal. Then the decomposition R( I is the creating decomposition on the groupoid (R , (). 

Proof: See [9], pg. 17.

Theorem 2.28. Let R be a ring, I be its ideal. Then (R( I ,+, () is a ring and its operations are defined in the following way: Let a, b be arbitrary elements of the set R. Then there applies
(a + I) + (b + I) = (a + b) + I,         (a + I) ( (b + I) = (a ( b) + I .

Proof: See [9], pg. 17.
Definition 2.29. Let R be a ring, I be its ideal. Then the ring (R( I ,+, () is called a quotient ring of the ring R with respect to the ideal I. 
Theorem 2.30. Let (R ,+, () be a ring and (  be a creating decomposition on groupoids (R ,+) and (R ,(), the same on these both groupoids. Let I ( (  be a class which contains 0R . Then I is an ideal of the ring R and there applies R( I = ( . 

Proof: See [9], pg. 18.

Definition 2.31. Let R be a ring, I be its ideal. We will say that elements a, b ( R are congruent with respect to the ideal I , if there applies a ( b( I . We write a ( b (I). 
Theorem 2.32. Let R be a ring, I be its arbitrary ideal. The congruence with respect to the ideal I is a congruence on groupoids (R ,+) and (R ,(), the decomposition corresponding to this congruence is R( I .

Proof: It is the consequence of the foregoing theorem.
Theorem 2.33. Let (R ,+, () be a ring. Then all congruences on groupoids (R ,+) and (R ,() are congruences corresponding to any ideal of the ring R. Each quotient ring of the ring R is therefore a quotient ring corresponding to any ideal of the ring R. 

Proof: It is the consequence of Theorem 2. 22.

Exercises for Check: 

1. In Example 2.3. there is stated that in an arbitrary groupoid (G, () the roughest decomposition (1 = {G} and the finest decomposition  ( = {{g}; g ( G} are creating ones. Determine congruences on the groupoid (G, () which generate both these creating decompositions.
Solution: A universal relation and an equivalence relation.

2. There is given a group of fourth roots of number one with operation multiplication, i.e. ({1, (1, i, (i}, (). Determine all its invariant subgroups.

Solution: ({1}, (), ({1, (1}, (), ({1, (1, i, (i}, (). 
3. There is given the ring (Z5, +, () of remainder classes modulo 5. Determine all its ideals and their corresponding quotient rings.

Solution:  Zero ideal {C0}, quotient ring ({{C0}, {C1}, {C2}, {C3}, {C4}}, +, ();improper ideal Z5, quotient ring ({C0, C1, C2, C3, C4}, +, (). 

Terms to Remember:

· Creating decomposition
· Quotient groupoid

· Invariant subgroups 
· Order and index of a subgroup in a group
· Quotient group
· Ideal of a ring

· Quotient ring
Concept Questions:

1. What is the connection between the creating decomposition on a groupoid and an equivalence relation on a groupoid?
2. What does Lagrange Theorem say and what is its consequence?

3. What is the construction of the group decomposition corresponding to its subgroup?

4. What is the definition of an invariant subgroup and what is its connection to the notion quotient group?

5. What is the definition of an ideal in a ring and how is the notion of an ideal connected with the notion of a quotient ring? 

Notes and Comments:

3. Natural Numbers

Study Guide: Natural numbers have been developing since time immemorial. Even in the prehistory, people dealt with the problem how to determine and express the numbers of elements of a finite set. First, they used unambiguous mapping (in the contemporary terminology), i.e. determining the number of heads of cattle by setting stones aside, then they used primitive abacuses (e.g. Věstonice tally), and finally the notion of a natural number started to develop gradually as a certain form of abstraction. It is not important which elements are in the certain set of objects, but what is essential, is only their number. The same process of a gradual abstraction is common for pupils in the first grade of elementary school when they achieve an abstract universal model (e.g. fingers or an abacus) after crossing over a stage of separated models (real objects, then their models and pictures). One of the basic characteristics of a set of all natural numbers is that each natural number has its immediate successor (for each n( N it is the number n + 1). This “fact” is already known to pupils at elementary school and is frequently used during teaching. We will use the existence of a successor while a theoretical introduction of the Peano set and then we will show that this set is the universal model of the set of all natural numbers. Let us note that most proofs can be found in [9], or [1], from which also the main part of the text is taken. 
Axioms of Peano Set P
(A1) For each element x of the set P there exists its successor, which will be denoted x\..
(A2) In the set P there exists an element e( P, which is not a successor of any element of the set P.

(A3) Different elements have different successors.

(A4) Full Induction Axiom. Let M ( P. If there applies:
a) e( M ,

b) (( x( P)  x( M (  x\ ( M ,

then M = P.
Note 3.1. While constructing Peano set elements, we will proceed from axion (A2) which ensures that the set P is a non-empty one. With the help of axiom (A1) there is defined the function of a successor which for each Peano set element guarantees the existence of its successor. Axiom (A3) is no less important. If we omitted this axiom, there could happen that a successor of a Peano set element was equal to some already inserted element of this set. Thus there would appear a “cycle” and Peano set would be a finite set, which surely does not correspond to a concept of the set of all natural numbers. Therefore axiom (A3) guarantees that the successor function is a uniquely invertible function and there cannot happen a cycle. The consequence of it is the fact that Peano set is an infinite set. Axiom (A4) which is called an Induction Axiom is used to prove that a certain property applies to all Peano set elements (to all natural numbers).
Theorem 3.2. Let x( P, then: 
(1) x (  x\ ,

(2) x (  e (  (( u( P) x = u\. 
Proof: See [9], pg. 22. 

Part (1) of the previous theorem means that each element differs from its successor. From the second part there follows that each element x of Peano set, with the exception of element e, is a successor of some element u( P. Such element u will be called a predecessor of an element x and will be denoted  /x.
Theorem 3.3. Peano set is an infinite set.

Proof: It is apparent from Peano set axioms, see also [1], pg. 140.

Definition 3.4. Let a( P be an arbitrary element. Let a set U(a) ( P be for each element a( P defined as follows:

(1) a( U(a),

(2) x( U(a) (  /x( U(a) (if /x exists). 

Then the set U(a) will be called a segment of Peano set corresponding to the element a. 

Note 3.5. It is apparent that for each a( P the corresponding segment U(a) is a finite set.

Note 3.6. From the previous there follows that Peano set can be considered to be a theoretical model of the set of all natural numbers. In this case an element e is equal to number 1, the successor x\ is equal to number x + 1 and models of segments corresponding to each natural number perceived as an element of the set P can be taken as follows: U(1) = {1}, U(2) = {1, 2}, U(3) = {1, 2, 3}, U(4) = {1, 2, 3, 4} etc. It is evident that the number of elements in each segment is determined by the natural number to which the segment corresponds. Therefore in the following text we can represent comparing of Peano set elements (the ordering relation in set P) and subsequently also operations addition and multiplication in set P with the help of the set of natural numbers. Although the theoretical procedure is the reverse one (from a general theory in the set P there apply special properties in the set of natural numbers), it is suitable for understanding of the substance to use even here the set of natural numbers as a model of Peano set P. Let us further note that there is also a possibility to construct Peano set axiomatically in the way that the element e is equal to number 0 (see e.g. [2]). In this case it is certainly necessary to formulate all definitions and theorems differently. But because number zero is not an element of the set of natural numbers, we will keep to a more common version where the element e equals to number 1. 

Solved Example 3.7. Using mathematical induction, prove the following hypothesis
( n ( N: 6 ( (n3 + 17n)

Solution: We will use axiom (A4). Let n = 1. Then number 18 is divisible by six and the hypothesis applies. Let us now assume that number n3 + 17n is divisible by six for n = 1, 2, 3, ..., k; we will prove that also number (k+1)3 + 17(k+1) is divisible by six. 
There applies: (k+1)3 + 17(k+1) = k3 + 3k2 + 3k + 1 + 17k + 17 = (k3 + 17k) + (3k2 + 3k + 18) = (k3 + 17k) + 3k(k + 1) + 18. Number (k3 + 17k) is divisible by six according to the induction presumption, number 3k(k + 1) is divisible by six because it is divisible by two and three (the product of two subsequent numbers) and number 18 is divisible by six trivially. Each of three addends of the number (k3 + 17k) + 3k(k + 1) + 18 is divisible by six, so also number (k+1)3 + 17(k+1) is divisible by six. 

Ordering Relation in the Set P
Definition 3.8. Let a, b ( P. Then: a (  b (  a ( U(b) .

Note 3.9. It is obvious that the relation (  from Definition 3.8. is reflexive, antisymmetric and transitive, so it really is an ordering in the set P. For each two different elements a, b of the set P there always applies just one of the relations a( U(b), b( U(a), therefore the ordering (  is linear. Hasse diagram of a linearly ordered set (P, ( ) is the chain with the minimal element e. Let us further remark that the representation a (  b denotes a strict order, i.e. a (  b and at the same time a (  b. 
Theorem 3.10. Let a, b ( P. Then:

(1) (( a ( P) a (  a\;
(2) Between elements a, a\  there is no element x of the set P with the property a (  x (  a\ ;

(3) Set (P, ( ) is a well ordered set.

Proof: See [9], pg. 25.

Operation Addition in the Set P
Theorem 3.11. In the set P there exists just one operation + such that for each pair x, y of elements of the set P there applies:

(1) x + e = x\ ,

(2) x + y\ = (x + y)\ . 
Proof: See [9], pg. 22.
Definition 3.12. The operation + from the previous theorem is called addition in the set P . 
Theorem 3.13. The operation + in the set P is associative and commutative.

Proof: See [9], pg. 23.

Solved Example 3.14. Based on the previous theorem, deduce the sum of natural numbers 2 and 3.

Solution: Let us use the fact that the set of natural numbers is a model of Peano set, where the element e corresponds to number 1.  We have to be aware of the fact that 3 =  1\\ . Let us denote x = 2. According to a recurrent definition of operation addition (Theorem 3. 11.) there applies:

2 + 1 = 2\ = 3;

2 + 1\ = (2 + 1)\ = 3\ = 4;

2 + 1\\ = (2 + 1\)\ = 4\ = 5.

Evidently there holds 2 + 3 = 5. 
Theorem 3.15. In the groupoid (P, +) there apply subtraction laws, i.e. for each two elements x, y, z of the set P there applies the implication  x + y = x + z (  y = z . 

Proof: See [9], pg. 24.

Theorem 3.16. Let x, y ( P. Then there arises just one of the following three cases:

(1) x = y ,

(2) there is p ( P with the property x = y + p ,
(3) there is  q ( P with the property y = x + q .
Proof: See [9], pg. 24.

Note 3.17. Operation addition is connected with the ordering relation by several formulas. Some of them are given in the following theorem.

Theorem 3.18. Let x, y, z, u, v ( P. Then:

(1) x (  y (  x + z (  y + z , 

(2) x (  y (  x + z (  y + z ,
(3) x (  y, u (  v (  x + u (  y + v,
(4) x (  y (  x\ (  y .
Proof: See [9], pg. 25.

Operation Multiplication in the Set P
Theorem 3.19. In the set P there is just one operation ( where for each pair x, y of elements of the set P there applies:

(1) x ( e = x ,

(2) x ( y\ = x ( y + x . 
Proof: See [9], pg. 27.
Definition 3.20. The operation ( from the previous theorem is called multiplication in the set P . 

If we do not use brackets in the notation of mathematical operations in the set P, the operation multiplication has the priority before the operation addition. In the notation, the symbol of multiplication ( is often omitted, i.e. instead of x ( y it is written only xy. 
Theorem 3.21. The operation ( in the set P is associative, commutative, has a neutral element (element e) and it is joined with operation addition through a distributive law:

x, y, z ( P: x ( (y + z) = x ( y + x ( z . 

Proof: See [9], pg. 27. 
Solved Example 3.22. Based on the previous theorem, deduce the product of natural numbers 2 and 3.

Solution: Again, we have to realize that there applies 3 =  1\\ .  Let us denote x = 2. According to the recurrent definition of the operation multiplication (Theorem 3.19.) there applies: 

2 ( 1 = 2;

2 ( 1\ = (2 ( 1) + 2 = 2 + 2 = 4;

2 ( 1\\ = (2 ( 1\) + 2 = 4 + 2 = 6.

Evidently, there holds 2 ( 3 = 6. Let us be aware that while the operation multiplication, it is necessary to have defined the operation addition. The numerical link 2+ 2 = 4, and 4 + 2 = 6 would have to be deduced theoretically by a recurrently defined operation addition (see the previous example). 

Note 3.23. The operation multiplication is joined with the ordering relation by several formulas. Some of them are given in the following theorem (there is an interesting parallel to similar statements for addition). Let us note that statement (3) from the following theorem says that in the groupoid (P, () there apply cancellation laws.
Theorem 3.24. Let x, y, z, u, v ( P. Then:

(1) x (  y (  x ( z (  y ( z , 

(2) x (  y (  x ( z (  y ( z ,
(3) x ( z = y ( z (  x = y 
(4) x (  y, u (  v (  x ( u (  y ( v. 
Proof: See [9], pg. 28.

Corollary 3.25.  The algebraic structure (P, +, () is a commutative semi-ring with a multiplicative identity. 

Proof: Evident.

Note 3.26. From the definition of the set P and described properties of the ordering relation and operations addition and multiplication in this set, there results that the semi-ring of all natural numbers (N, +, () is one of possible models of the semi-ring (P, +, (). The role of the element e is played by number 1, the successor of the number x is the number x + 1, the segment of the set N corresponding to the number n contains all natural numbers from number 1 to number n ( 1 etc.
Note 3.27. There is a problem question which asks about the number of existing models of the semi-ring (P, +, (), i.e. if natural numbers are determined unambiguously, or if there exists any model of the set P. The existence of the model of the set P and thus the existence of natural numbers is easy to show; these are cardinal numbers of finite sets. We will deal with them in the next part of the text. The answer to the question about the number of Peano set models is following: there are infinite models and they are isomorphic to each other. Therefore it is possible to claim that natural numbers can be defined in the only way up to isomorphism. Here is given an important theorem about this isomorphism: 

Theorem 3.28. (About Uniqueness of Natural Numbers) Let N1, N2 be two sets of natural numbers (two models of Peano set). Then there is just one and only one bijection f: N1 ( N2 with the property
( x ( N1 : f ( x\ ) = [ f(x)] \  . 

Proof: See [9], pg. 30.

Natural Numbers as Cardinal Numbers of Finite Sets
In this part we will restrict our attention only to finite sets. Although the general theory of sets also deals with cardinal numbers of infinite sets, for the sake of the construction of the set of all natural numbers, we do not need to deal with infinite sets.

We know that two sets are equivalent if there is a bijection of one on another. This equivalence relation on the system of all finite sets ℳ (we denote it ∼) is an equivalence in the relation sense (evidently, it is reflexive, symmetric and transitive). Therefore, it generates unambiguously the decomposition ℳ(∼ on the system of all finite sets ℳ. The classes of the decomposition ℳ(∼ are called cardinal numbers. The cardinal number of the finite set M  is therefore the decomposition class ℳ(∼, which includes the set M.  Instead of the term cardinal number of the set M , it is often used the power of the set M (we denote it card M). Now let us define natural numbers as cardinal numbers of finite sets.
If we describe the above mentioned construction in a popular way (and mathematically not quite accurately), then the cardinal number of the finite set M is a system of sets which apart from given set M contains all sets (infinitely many), which have the same number of elements as the set M. This only common property of all these sets, i.e. the same number of elements, is expressed by a natural number which is defined by the cardinal number of the set M . Therefore, in Mathematics at primary schools we say that natural numbers express the number of elements of finite sets. 

The transition from the structure (P, +, () to its model (N, +, () can be described as follows: Let n ( P be an arbitrary element of Peano set. A segment of the set P corresponding to an element n is the set U(n) = {e, e\, e\\, e\\\, ... , /n, n}. This set is finite and therefore surely belongs to some decomposition class ℳ(∼. This decomposition class is the cardinal number of the finite set U(n) and the corresponding natural number is the number n. It is possible to state that the segment U(n) includes just n elements. This implies that the element e corresponds to number 1, the element e\  to number 2, the element e\\  to number 3 etc. The natural ordering of natural numbers can then be defined in accord with the definition of ordering of Peano set elements (each number belonging to U(n) is equal or less than n). 

Another situation is with the definition of both basic operations addition and multiplication. Although these operations can be defined in the same way as in abstract Peano set, because of methodology reasons, these two operations are introduced differently, on the basis of set operations. 

Definition 3.29. (Addition of cardinal numbers) Let A, B be finite sets and A ( B =
[image: image18.wmf]f

. Then we define
card A + card B  =  card (A ( B) .

Definition 3.30. (Multiplication of cardinal numbers) Let A, B be finite sets. 

Then we define
card A ( card B  =  card (A ( B) . 
Note 3.31. It is possible to show that both operations defined by Definitions 3.29. and 3.30. have all properties that are required by operations addition and multiplications of natural numbers. Let us now consider the restrictive condition A ( B =
[image: image19.wmf]f

 in Definition 3.29. If we leave it out, for the addition of cardinal numbers of the sets A, B there will apply card A + card B   (  card (A ( B) , while the number on the left side of this non-strict inequality is generally greater than the number on the right side by the number of the elements of the intersection of both sets. Then there applies the equality 

card A + card B  (  card (A ( B)  =  card (A ( B) .
From the theoretical point of view, it is a principle of inclusion and exclusion for n = 2. Therefore, if the sets A, B are disjoint ones, then card (A ( B) = 0 and the previous equality changes into the definition of addition of cardinal numbers according to Definition 3.29. 

Exercises for Check: 

1. With the help of Peano set segments compare natural numbers 5  and  8. 

Solution: 5 ( U(8), 5 ( 8. 

2. According to definitions of operations in Peano set determine the sum and product of numbers 3 and 4. 
Solution: 3 + 4 = 7, 3 ( 4 = 12.

3. Determine the sum and product of cardinal numbers of the sets {a, b, c}, {a, x}. 

Solution: The sum is 5, the product is 6. 

Terms to Remember:

· Peano set
· Successor of a Peano set element
· Peano set segment
· Sum of Peano set elements
· Product of Peano set elements
· Cardinal number of a finite set
Concept Questions:

1. What are Peano set axioms?

2. What is the proof by mathematical induction based on?

3. How is defined the inequality between Peano set elements?

4. What is the general definition of the semi-ring (M, +, ()?
5. How is defined the sum and product of cardinal numbers of finite sets?

Notes and Comments:

4. Number Systems
Study guide: The question of how to represent a number has accompanied the humankind since ancient times. There are known several ways of numeration during the historical evolution, for example the numeration in ancient Egypt and Mesopotamia, the numeration in ancient Greece and Rome or the numeration of ancient Mayans. These are interesting questions but we cannot deal with them now. Let us only state that during the evolution there developed two types of number systems, the positional and the non-positional ones. The basic difference is the fact that non-positional systems do not distinguish the order of the numeral in the numeration, while the positional ones do. In the history most number systems were non-positional ones (Egypt, Mesopotamia, Greece, Rome), while the nowadays used systems are solely positional ones. The only non-positional system, which we can encounter, is the system of Roman numerals. However, let us notice that we do not count with Roman numerals (we do not perform any calculations), they are used only as the representation of years. Positional systems, as was already mentioned, distinguish the order of the numeral. Therefore, it is necessary to set the base of the positional number system. Nowadays, the most often used system for ordinary calculations is the system with the base of ten (the decimal system). In the information technology we can encounter also systems the bases of which are some powers of number two (binary, quaternary, octal, and hexadecimal ones). This chapter will be devoted to positional number systems. We will deal with the conversion of numerations and calculations in non-decimal number systems. Obviously, we will have to limit ourselves to positive numbers: we will start with natural numbers and then we will mention also conversions of rational numbers.
Example 4.1. Non-positional systems do not distinguish the order of the numeral, while the positional ones do. So in the numeration with Roman numerals the number I I I equals three, while in the decimal system, the number 111 equals one hundred and eleven.  Non-positional systems do not have a symbol for zero which on the contrary is necessary in positional systems. For example, numbers one hundred and one, one thousand and one are in decimal system represented by 101, 1001, while with the help of Roman numerals they are C I, M I.

Theorem 4.2. Let z be a given natural number greater than one, let a be an arbitrary natural number. Then:  

(1) There is a natural number n with the property zn (  a (  zn+1.

(2) The number a can be represented by only one way in the form 

                  a = an zn + an(1 zn(1 + an(2 zn(2 + ... + a2 z2 + a1 z + a0 ,                                  (⋆)

 where ai , i = 0, 1, 2, ..., n are non-negative integers less than z.

Proof: See [1], pg. 158.

Definition 4.3. Let there hold the identification from the previous theorem and for the numbers a, n let there apply the formulation (⋆). Then we say that we expressed the number a in the number system with the base z. We write in short a = (anan(1...a0)z , where the brackets can be omitted. The number z is called a base of the number system, symbols ai , i = 0, ..., n are called figures (digits). We say that the figure ai has the order i, the number zi is called the unit of the order i for   i = 0, ..., n. 
Note 4.4. If z ( 10, then from the previous theorem there applies that in the system with the base z there have to exist just z different figures 0, 1, ..., z ( 1. As in the commonly used decimal system there are only 10 figures, 0, ..., 9, it is necessary to add other symbols. According to an international convention there are used A = 10, B = 11, C = 12, D = 13, E = 14, F = 15.  Systems with the base greater than 16 are not used anymore, so it is not necessary to introduce next symbols.

Note 4.5. (Comparing numbers). In each positional system there apply the same rules for comparing numbers like in the decimal system (generally there is no problem to verify them). In the concrete, then there applies: If the notation of the natural number a in a number system with the base z includes just n figures (the figure of the greatest order is a non-zero one), then zn(1 (  a (  zn. If two natural numbers a, b are noted in the number system with the same base (the figure of the greatest order is a non-zero ones), then:

1. The number which has more figures in the notation is greater.

2. If notations of both numbers have the same number of figures, then the greater one is the number in the notation of which the figure of the greatest order denotes a greater natural number. 

3. Let two different numbers a, b are noted in the same system by notations with the same number of figures, it means (anan(1...a0)z , (bnbn(1...b0)z. If there is a number k (0 (  k (  n) with the property ai = bi for i = n, n(1, ..., k+1, ak ( bk , then the greater number is the one in the notation of which the figure of the order k denotes a greater natural number. 

Note 4.6. (Converting the notation of natural numbers) While converting the notation of a natural number a from the decimal system to a system with a base z , we will divide the number a by the number z  with a remainder. In the next step we will take the partial quotient from the previous division and we will divide it by the base of the system. Thus we will continue as long as the partial quotient is equal zero (after a finite number of divisions this situation must arise). The desired notation of the number a in the system with the base z is given by all remainders of all divisions which we will write next to each other from the last to the first one. While real converting, most often we will use a simple pattern with two columns which we will show first for a = 986, z = 4, then for a = 2507, z = 16. We will write the numbers a, z to the first line, the partial quotients to the left column and the remainders to the right column. The resulting notation is then given when we write down the remainders “from the bottom to the top”. The reverse process, converting the number from a non-decimal system to the decimal one, is performed by its expansion in the non-decimal system.
Solved Example 4.7. 

	986
	4

	246

61

15

3

0
	2

2

1

3

3


986 = 331224 .

Check: 331224  = 3 . 44 + 3 . 43 + 1 . 42 + 2 . 4 + 2 = 3 . 256 + 3 . 64 + 16 + 8 + 2 = 986. 
Solved Example 4.8. 

	2507
	16

	156

9

0
	11

12

9


2057 = 9CB16 .

Check: 9CB16 = 9 . 162 + 12 . 16 + 11 = 9 . 256 + 12 . 16 + 11 = 2304 + 192 + 11 = 2507.
Let us notice that when z ( 10 , we note the double-digit remainders with the help of letters and reversely, while expanding the number we will use instead of the letter the corresponding double-digit number.

Note 4.9. Based on Note 4.6., it is possible to convert the notation of any natural number from the decimal system to a non-decimal one and vice versa. If we want to convert the notation of a natural number from a non-decimal system to another non-decimal system, the most convenient way is to pass through the decimal system. Nevertheless, there are cases (and are quite often used especially in informatics), when such conversion between two non-decimal systems can be done directly. It is feasible if for the two system bases z1 , z2  there applies z1 = z2n for any natural number n. With respect to the practical usage, the most important conversions are the direct ones between binary and quaternary systems, binary and octal systems, binary and hexadecimal systems, possibly quaternary and hexadecimal systems. The conversions are based on the following theorem: 

Theorem 4.10. Let for two system z1 , z2  there apply z1 = z2n for an arbitrary natural number n. Then a number noted by n digits in the number system with the base z2 can be noted by only one digit in the number system with the base z1 . 
Proof: See [1], pg. 166. 

Solved Example 4.11. Convert number 1101100101102 into the system with the base 8. 

We know that 8 = 23. Then: 1101010101102 = 1 . 211 + 1 . 210 + 0 . 29 + 1 . 28 + 0 . 27 + 1 . 26 + 0 . 25 + 1 . 24 + 0 . 23 + 1 . 22 + 1 . 2 + 0 = (1 . 22 + 1 . 2 + 0) . (23)3 + (1 . 22 + 0 . 2 + 1) . (23)2 + (0 . 22 + 1 . 2 + 0) . 23 + (1 . 22 + 1 . 2 + 0) = 6 . 83 + 5 . 82 + 2 . 8 + 6 = 65268 . 
Note 4.12. The procedure given in the previous example is quite clumsy and disorganized. In practice, when converting the notation of the number from the base z2 to the base z1 = z2n , we will note the number in a shortened form in the system z2, divide it from the right into n-digit groups, while each such group of n digits, according to Theorem 4. 10., will produce one digit in system z1. Example 4.11. can be then solved as follows: 1101100101102 = 110( 110( 010( 1102 = 65268 . While performing the reverse conversion we will proceed similarly. However, we have to realize that from each digit in the base z1 we always create a group of n digits in the base z2. So, for example 3014 = 1100012, 3018 = 0110000012 , it means that number zero is noted by two zeroes in the first case, while by three zeroes in the second case. 

Note 4.13. Now, we will deal with the conversion of notations of real numbers. Without detriment to generality, we can restrict ourselves to positive real numbers. Let us mention the necessary terminology: 

Let ( be a positive real number. Then the greatest integer which is not greater than the number (, will be denoted [(] and we will call it the integral part of the number ( . The number ( ( [(] is denoted (( (  and is called the fractional part of the real number ( . Then: ( = [(] + (( ( , [(] (  ( (  [(] + 1, 0 (  (( ( ( 1, [(] ( Z . When ( (  0, there even applies [(] ( N .

We will convert the notation of the positive real number (  in the following way. There applies ( = [(] + (( ( . As [(] ( N, it is possible to convert the notation of the number [(] into the system with the base z with the help of methods for conversion of the notation of natural numbers, as described above. There only remains to convert the fractional part of the number ( , which is (( (, into the system with the base z. There applies 0 (  (( ( ( 1, while the case (( ( = 0 is trivial and we will exclude it from our considerations (number ( would be a natural one in this case). Let us consider only the situation 0 (  (( ( ( 1. We will now deal with conversions of the notations of such numbers. As there cannot be a misunderstanding, we can use only ( instead of (( (. 
Theorem 4.14. Let ( be a positive real number with the property 0 ( ( ( 1, let z be a natural number greater than one. Let a0  = 0, (0 = ( . For n = 1, 2, ... there applies 

an = [z . (n(1], (n =  (z . (n(1 ( . Then the number ( can be represented in the form ( = a0 , a1a2a3...., while such representation is unambiguous. 

Proof: See [9], pg 63. 

Note 4.15. As will be shown in the chapter about the fields of rational and real numbers, the expansion of the number ( is either terminating or recurring for (  rational, while for (  irrational the expansion is non-terminating and non-recurring. However, the type of expansion does not have to be the same as in the decimal system, which will be shown in examples.

Solved Example 4.16. 

a) ( = 0,5, z = 3. Let us set a0  = 0, (0 = 0, 5. Let us calculate 3 . 0,5 = 1,5 and we get a1 = 1,  (1 = 0,5. Let us again calculate 3 . 0,5 = 1,5 and we get the same values a2 = 1,  (2 = 0,5. We can continue this way to an infinity, so there applies 0,5 = 0,1111....3 . Number 0,5 is therefore a recurring number in a ternary system. The correctness of the calculation can be easily verified: 0,1111....3 = 1 . 3(1 + 1 . 3(2 + 1 . 3(3 + ... = 
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1
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 = 0,5 (this is a convergent geometric series). 

b) a = 7,65, z = 4. According to the convention ( = 0,65. Let us set a0  = 0, (0 = 0,65. Let us calculate 4 . 0,65 = 2,6 and we get a1 = 2,  (1 = 0,6. Let us calculate again 4 . 0,6 = 2,4  and we get values a2 = 2,  (2 = 0,4. Further on without a commentary: 4 . 0,4 = 1,6 ,  a3 = 1,  (3 = 0,6 ; 4 . 0,6 = 2,4 ,  a2 = 2,  (2 = 0,4 ; 4 . 0,4 = 1,6 ,  a3 = 1,  (3 = 0,6  etc. Then there applies 0,65 = 0,2
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4 ., As we should have converted the notation of number a = 7,65 according to the task, there only remains to add the integral part of this number, it is number 7. We can easily find out that 7 = 134 , then we get together 7, 65 = 13, 2
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4 . 

Exercises for Check: 

1. Convert numbers 147, 693, 751 into binary, quaternary, octal and hexadecimal systems. 

Solution: 147 = 100100112 = 21034 = 2238 = 9316 ;

693 = 10101101012 = 223114 = 12658 = 2B516 ; 

751 = 10111011112 = 232334 = 13578 = 2EF16 .

2. Convert numbers 4DA616 , 7038 into a decimal system.

Solution: 4DA616 = 19878, 7038 = 451. 

3. Compare numbers: 3C216 , 17028 .

Solution: Numbers are equal. 

4. Convert number 0,7 into a quaternary system. 
Solution: 0,7 = 0, 2
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4  . 
5. Convert number 10,
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8 into a decimal system.
Solution: 10,
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8 = 
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Terms to Remember:

· Base of a number system
· Positional number system
· Expansion of a number in a number system
· Conversion of a number notation from one number system to another one
Concept Questions:

1. What digits are there in the number system with the base z?

2. How can you convert the number notation from the decimal system to a non-decimal one?
3. How are there performed the reverse conversions from a non-decimal system to the decimal one?
4. Is it possible to convert number notations between two non-decimal systems directly? When and how?

5. How are notations or rational numbers converted?

Notes and Comments:

5. Integers
Study Guide: In this chapter we will deal with the construction of the integral domain of all integers. The answer to this problem and the motivation for this construction is the fact that natural numbers and operations with them are not sufficient for solving all real mathematical problems, for example it is not possible to subtract or divide without limits. Therefore, our aim is to create such a number system in which there will apply all calculating rules like in the set of all natural numbers, further it will be possible to subtract without limits (the problem with the division will be solved after the introduction of rational numbers) and finally, the no less important requirement – the number set of all integers, which we will construct, has to include the set of natural numbers. We will start from the general theory of an embedding the associative and commutative groupoid into its quotient group, then this general theory will be specified to the construction of integers and derivation of their basic calculating rules (with the help of representing ordered pairs). At the end of the chapter there will be shown that owing to the embedding of the semi-ring of natural numbers into the integral domain of all integers, we can note integers in the way which we were taught at basic school. We have to say (although from the mathematical point of view it is not completely correct and it is a simplified and popularizing view) that each representing ordered pair is the representative of such integer which is the difference between the first and the second number of this ordered pair. Without this concept the whole construction of the integral domain of all integers, including all calculating rules, will be very abstract and formally complicated.
General Theory
Definition 5.1. Let (G, (), (H, () be groupoids (further we will use only the symbol of the carrier set to denote groupoids). We will say that the groupoid G can be embedded into the groupoid H, if there exists an injective homomorphism f of the groupoid G into the groupoid H. 
Theorem 5.2. Let G be a commutative groupoid. Then the following statements are equivalent:

(1) The groupoid G is associative and there apply the formulas of reduction.

(2) The groupoid G can be embedded into any group.

Proof: See [9], pg. 33.

Note 5.3. The proof of this theorem is a constructional one, as it includes the construction of a quotient group (  of the groupoid G. This construction will be described as follows:

Let us start with the Cartesian product G ( G. Let on G ( G be defined a binary relation ∼ in the following way: 

             [a, b] ∼ [c, d] (  a ( d = b ( c  for each two pairs from  G ( G.                    (1)

This relation ∼ is an equivalence, therefore there exists a decomposition G ( G (∼ . The set of classes of the decomposition G ( G (∼ will be denoted as (. We will define a binary operation o on the set system ( in the following way. Let [a, b], [c, d] be representatives of two classes of the system ( . Then
                                                 [a, b] o [c, d] = [a ( c, b ( d].                                        (2)

The groupoid ((, o) is a factoroid of the groupoid (G, (). It is possible to prove that moreover an algebraic structure ((, o) is a group. This group is called a quotient group of the groupoid (G, (). The embedding ( : G ( (  of the groupoid G into the group (  is defined for every element g ( G by the following formula 

                                                     ( (g) = {[g ( x, x]; x( G}.                                           (3)

If, instead of the symbol of multiplication (operation ( ), there is used the symbol of addition (operation +), then definitions (1), (2), (3) will change into the following form:

             [a, b] ∼ [c, d] (  a + d = b + c  for each two pairs from  G ( G ,                    (4)

                                             [a, b] o [c, d] = [a + c, b + d]  ,                                         (5)

                                            ( (g) = {[g + x, x]; x( G}.                                                   (6)

Then, instead of the term quotient group we will use the term differential group.

Note 5.4. Let on the set G ( G be defined a binary operation ( by the components, it means that for arbitrary pairs [a, b], [c, d] ( G ( G there applies [a, b] ( [c, d] = [a ( c, b ( d]. The above defined equivalence ∼ is the congruence on the groupoid (G ( G, () and the decomposition ( is a creating decomposition on this groupoid. The quotient group ((, o) is then a factorgroupoid of the groupoid (G ( G, (). 
Integers
Definition 5.5. The differential group of the semigroup (N, +) is called an additive group of integers (Z, +).
Note 5.6. While constructing the group (Z, +) we will proceed according to a general construction. The initial Cartesian product is N (  N, the relation ∼ is defined by (4) for G = N; the operation o, which will be denoted by the symbol +, i.e. the same as the addition of natural numbers (obviously there will not be any misunderstanding), is then defined by (5), which is as follows:
                                           [a, b] + [c, d] = [a + c, b + d].                                              (7)

Integers, according to this construction, are classes of the decomposition N ( N (∼ . The embedding ( : N ( Z  of the groupoid N into the group Z is defined similarly as in (6), i.e. for each element n ( N by the following formula 

( (n) = {[n + x, x]; x( N}.
Note 5.7. In the following text about integers we have to distinguish between the case when [a, b] will denote this one specific ordered pair of natural numbers and the case when it will be a representative pair of an integer. In the latter case we will use the bold notation [a, b]. There applies for example [4, 2] = {[3, 1], [4, 2], [5, 3], [6, 4], ...}. An integer is always represented by an infinite set of equivalent ordered pairs of natural numbers. In accordance with the agreed notation it is necessary to distinguish the following: 
For example, for ordered pairs [5, 3], [6, 4] there applies [5, 3] ( [6, 4], [5, 3] ∼ [6, 4], while for two integers [5, 3], [6, 4] there applies the equivalence [5, 3] = [6, 4], because both these pairs are representatives of the same decomposition class of the system N ( N (∼. Let us remark that in the next part of the text we will note integers by bold capital letters (to make situation easier), e.g. A, B, .... Such notation is not in contradiction to the above given construction; we can always get back to the representation by ordered pairs, e.g. A = [a1, a2], B = [b1, b2], ....
Operations with Integers and their Properties
Note 5.8. Addition of integers is, as it has already been mentioned in Note 5.3, defined by a formula 
[a, b] + [c, d] = [a + c, b + d].
Theorem 5.9. Operation + from the previous Note 5.8. is commutative, associative, has a neutral element 0 represented by a pair [n, n] for an arbitrary n( N, and for each integer                      A = [a, b] there exists just one additive inverse number (A = [b, a].

Proof: It can be easily proved by rearranging.

Theorem 5.10. An algebraic structure (Z, +) is a commutative group, where there apply group division rules, which means that an equation A + X = B has always a solution in the set Z for each two integers A, B. 

Proof: It is possible to prove directly by rearranging, see also [1], pg. 175.

Corollary 5.11. In the group (Z, +) there apply rules about cancellation (in an additive notation there apply the rules about subtraction) and there exists just one inverse operation to the operation of addition. This operation is called subtraction and is defined by a formula             A ( B = A + ((B). 

Proof: It follows from the previous theorem.

Note 5.12. From previous Theorem 5.9. and Theorem 5.10., and from Corollary 5.11. it is possible to deduce the rule for the operation subtraction:

[a, b] ( [c, d] = [a + d, b + c].
Let us notice that in the definition of subtraction on the right side there are only sums of natural numbers, it means that operation subtraction is defined without limits and thus the algebraic structure (Z, () is a groupoid. This groupoid is not a semi-group because it is evident that operation subtraction is neither associative nor commutative. 

Definition 5.13. Let us define a binary operation ( on the set Z in the following way:

[a, b] ( [c, d] = [ac + bd, ad + bc].
This operation will be called multiplication in the set of integers. This operation is in the set Z defined unlimitedly, so the structure (Z, () is then a groupoid. 

Theorem 5.14. The groupoid (Z, () is associative, commutative and has a neutral element 1 represented by a pair [n+1, n] for an arbitrary n( N .

Proof: See [9], pg. 36.

Theorem 5.15.  In the groupoid (Z, () there apply the limited cancellation law, it means that for each three integers x, y, z, x( 0 there apply the following implication: x ( y = x ( z (  y = z . 

Proof: See [9], pg. 36.

Theorem 5.16. The operation multiplication is in the set of integers connected with the operation addition by a distributive law, i.e. 

A, B, C ( Z:  A ( (B + C) = A ( B + A ( C. 

Proof: It is possible to prove by rearranging.
Corollary 5.17. The algebraic structure (Z,+,() is a commutative ring of a characteristic zero with a multiplicative identity, which is not a field. In this ring there are no proper divisors of zero, thus it is the domain of integrity.
Proof: It is evident.

Note 5.18. In the domain of integrity of all integers (Z, +, () there apply a number of formulas which are used while computations. Let us give some examples.

Theorem 5.19. Let A, B, C ( Z. Then:

(1) (((A) = A;

(2) ((A + B) = ((A) + ((B);
(3) ((A ( B) = B ( A;
(4) (A ( (B ( C)  = (A + C) ( B;
(5)  ((A) ( B = A ( ((B) = ((A ( B).
Proof: It can be proved easily with definitions of operations in Z.

Solved Example 5.20. Calculate the sum, difference and product of integers represented by ordered pairs [2, 5], [1, 6].
Solution: [2, 5] + [1, 6] = [3, 11], [2, 5] ( [1, 6] = [8, 6], [2, 5] ( [1, 6] = [32, 17].
Solved Example 5.22. Determine the quotient of integers A, B, represented by ordered pairs A = [1, 7], B = [2, 4]. 
Solution: As follows from a general theory, the general formula for the operation division in the set of all integers does not exist. Therefore we have to start from the divisibility relation in the set of all integers. According to the definition of this relation, the integer A is divisible by the integer B if and only if there exists an integer X with the property B ( X = A. For two given integers A, B we are going to search for an unknown number X = [x, y]. Here follows the procedure which will allow us to find such number or determine that such number does not exist.

B ( X = A

[2, 4] ( [x, y] = [1, 7]

[2x + 4y, 2y + 4x] = [1, 7]

Now we cannot form equations from the first and the second components, but we have to use the definition of the equivalence relation ∼ according to Formula (4), i.e. for each two integers A, B, represented by ordered pairs A = [a, b], B = [c, d], there applies [a, b] ∼ [c, d] (  a + d = b + c . It is evident that if two ordered pairs are equal, i.e. represent the same number, they must be equivalent. Then, we can write 2x + 4y + 7 = 2y + 4x + 1 (*) , after simplification x = y + 3. Each ordered pair [x, y], for whose components there applies x = y + 3, represent the quotient X = [x, y]. Let us choose any of them, e.g. X = [4, 1]. Let us note that the formula (*) cannot be simplified (for example, if we set instead of the given number A the number A = [1, 6]), we will find out that the quotient of the given integers does not exist. 

Solved Example 5.23. Prove that for each two integers A, B there applies ((A ( B) = B ( A. 
Solution: Let us set the representing ordered pairs A = [a, b], B = [c, d]. Let us simplify successively left and right sides of the proved equality:

L = ((A ( B) = (([a, b] ( [c, d]) = ([a + d, b + c] = [b + c, a + d];

R = B ( A = [c, d] ( [a, b] = [c + b, d + a]. 
There applies the equality L = P, because according to the construction, components a, b, c, d in both representing ordered pairs are natural numbers and addition of natural numbers is a commutative operation. So the equality, which we were proving, applies.

Ordering Relation in the Set of Integers
Definition 5.24. Let A = [a, b] be an integer. We will say that this number is positive and write A (  0, if and only if a (  b. If a = b, then A = 0 ; in the remaining case for a (  b we will say that the integer A is negative and write A (  0. 
Note 5.25. It is evident that there always must be one of the previously mentioned cases. Therefore, every integer is either positive, negative, or equals zero. There exists the decomposition of the set of integers to positive numbers, zero and negative numbers. In agreement with the usual terminology, let us introduce also the notation A ( 0 and say that the number A is non-positive, or in the case A (  0 this number is non-negative.
Definition 5.26. Let A, B be integers. We will say that A (  B, if and only if A ( B (  0.         If A ( B = 0, then A = B ; in the remaining case for A ( B (  0 there applies A ( B. 
Note 5.27. It is evident that also in the previous definition one of the cases must always happen. The ordering relation of all integers is thus linear. Also here we can commonly use a non-strict inequality A (  B for the case of A ( B (  0 and analogically A ( B for the case of A ( B (  0. 

Solved Example 5.28. Decide if integers A, B, represented by ordered pairs A = [1, 7], B = [2, 4], are equal.

Solution: [1, 7] ( [2, 4] = [5, 9], 5 (  9, i.e. [5, 9] (  0, therefore [1, 7] ( [2, 4]. 
Theorem 5.29. Let A be an integer. Then there holds:

(1) A (  0 (  (A (  0.

(2) A (  0 (  (A (  0.

Proof: It is evident from Definition 5. 24.
Theorem 5.30. Let A, B be positive integers. Then their sum A + B and product A ( B are positive integers, too. 

Proof: See [1], pp. 178 - 179.

Note 5.31. The above defined ordering relation in the set of all integers is connected with operations in this set through a lot of formulas. Let us mention some of them.

Theorem 5.32. Let A,  B,  C,  D be arbitrary integers. Then there holds: 

(1) If A ( B and C (  0, then AC (  BC;

(2) If A + C ( B + C, then A ( B;

(3) If AC ( BC and C (  0, then A ( B;

(4) If AC ( BC and C (  0, then A ( B;

(5) If A ( B and C (  D, then A + C (  B + D;

(6) If A ( B and C (  D and C (  0 and B (  0, then A ( C (  B ( D .
Proof: See [1], pg. 199, ex. 16.

Theorem 5.33. Let A, B be arbitrary integers, while B ( 0. Then there is an unambiguously determined pair of integers Q, R (while 0 (  R ( (B() with the property A = B ( Q + R. The number A is called a dividend, the number B is a divisor, the number Q is a quotient (sometimes also a partial quotient) and the number R is a remainder. The process of finding numbers Q, R is called division with a remainder in the set of integers. 

Proof: See [9], pg. 38.

Definition 5.34. An absolute value (A( of the integer A is defined as follows:

(1) If A (  0, then (A( = A ;

(2) If A (  0, then (A( = (A. 

Theorem 5.35. Let A, B be arbitrary integers, then there holds:

(1) (A( = ((A(;

(2) A (  (A(;

(3) (A(2 = A2;
(4) (A ( B( = (A(( (B(;

(5) (A + B(  (  (A(+ (B(;

(6) (A ( B(  (  (A(( (B(.

Proof: It is evident, or [1], pg. 182.

Note 5.36. The embedding ( : N ( Z  of the groupoid N into the group Z is defined according to Note 5.3. for each element n ( N by the formula ( (n) = {[n + x, x]; x( N}. Every positive integer (i.e. natural number) n is then represented by the pair [n + x, x], number zero is represented by the pair [x, x] and every negative integer (n is represented by the pair [x, n + x]. 

Exercises for Check: 

1. Determine the sum, difference and product of integers represented by the ordered pairs   [3, 5], [7, 3].
Solution: [3, 5] + [7, 3] = [10, 8], [3, 5] ( [7, 3] = [6, 12], [3, 5] ( [7, 3] = [36, 44].
2. Determine a quotient X of integers A, B, represented by the ordered pairs A = [9, 1], B = [2, 4]. 
Solution:  X = [1, 5]. 

3. Prove that for each two integers A, B there holds ((A + B) = ( A ( B. 

Solution: It can be proved by rearranging (see example 5.23).

4. Compare integers A, B, represented by the ordered pairs A = [6, 2], B = [4, 3].

Solution: [6, 2] ( [4, 3] = [9, 6], 9 (  6,it means [9, 6] (  0, so [6, 2] ( [4, 3]. 

Terms to Remember:

· Embedding of a semigroup into a group
· Differential group of the semigroup (N, +)
· Construction of the set of all integers
· Operations with integers
· Comparing of integers
· Absolute value of an integer
· Division with a remainder in the set of all integers
Concept Questions:

1. What is the procedure while constructing the set of all integers?

2. What is the general definition of the integral domain (M, +, ()?

3. How are defined a sum, product and difference of two integers?
4. How is it possible to determine a quotient of two integers (if it exists)?

5. How are defined positive and negative integers? What is the definition of an inequality of two integers?

6. What are the properties of an absolute value of an integer?
Notes and Comments:

6. Rational Numbers
Study Guide: This chapter is devoted to the construction of the field of all rational numbers. The base and motivation for this construction is the fact that neither integers nor operations with them are sufficient for solving all real mathematical problems; e.g. it is not possible to divide numbers without limits. Therefore, our aim was to create such number set where will apply all calculating rules the same as in the set of integers, further it will be possible to divide without limits (certainly apart from dividing by zero, which is not defined in any number set) and finally the no less important requirement – the number set of rational numbers, which we will construct, has to include the set of all integers. We will start from the general theory of the embedding of the associative ring, in which there applies a limited cancellation law, into its quotient field, then this general theory will be specified on the construction of rational numbers and derivation of their basic calculating rules (with the help of representing ordered pairs, expressed in the form of fractions). At the end of the chapter there will be shown that owing to the embedding of the integral domain of all integers into the quotient field of all rational numbers, we can really regard each integer as a rational number. Finally, we will also give an interesting property of the ordering relation in the set of all rational numbers. This ordering is dense, which is a difference from the ordering of both natural numbers and integers. We will shortly speak also about decimal expansions of rational numbers and recurring decimals which are related to that.

General Theory
Definition 6.1. Let R = (R, +, (), S = (S, +, () be rings. We will say that the ring R can be embedded into the ring S, if there is an injective homomorphism f of the ring R into the ring S. 
Theorem 6.2. Let (R, +, () be a commutative ring. Then the following statements are equivalent:

(1) In the ring (R, +, () there applies a limited cancellation law, i.e.
(x, y, z ( R, x( 0:  x ( y = x ( z (  y = z .

(2) The ring R can be embedded into a field.

Proof: See [9], pg. 41.

Note 6.3. The proof of this theorem is constructional, as it contains the construction of the quotient field T of the ring R. This construction will be described further.
Let us start from the Cartesian product R ( R( {0}, which will be denoted M and called a set of all fractions of the ring R. Let on M be defined a binary relation ∼ as follows: 

             [a, b] ∼ [c, d] (  a ( d = b ( c for each two pairs from the set M.                   (8)

This relation ∼ is an equivalence on M, so there is a decomposition M (∼ . Let us denote T the set of decomposition classes M (∼  On the set system T let us define binary operations addition and multiplication in the following way. Let [a, b], [c, d] be representatives of two classes of the system T . Then
                       [a, b] + [c, d] = [ad + bc, bd],   [a, b] ( [c, d] = [ac, bd]                     (9)

It is possible to prove that the algebraic structure (T, +, () is a field. This field is called a quotient field of the ring R. The class {[0, r]; r( R} is an additive identity of the field, the class {[r, r]; r( R} is a multiplicative identity. The embedding ( : R ( T  of the ring R into the field T  is for every element r ( R defined by the formula 

                                                     ( (r) = {[r ( x, x]; x( R}.                                            (10)

Note 6.4: The above mentioned embedding ( : R ( T will be called a canonical embedding of the ring R into its quotient field T. Each element r ( R is identified with its image ( (r)( T. On the basis of this identification we can consider the ring R to be a sub-ring of its quotient field T. 
Rational Numbers
Definition 6.5. A quotient field of the ring (Z, +, () is called a field of rational numbers       (Q, +, ().
Note 6.6. While constructing the field (Q,+,(), we proceed according to a general construction. The initial Cartesian product is M = Z ( Z( {0}, the relation ∼ is defined by Formula (8) for R = Z. According to the general theory they are fractions, so we will denote ordered pairs from the set M as fractions, i.e. instead of [a, b] we will write 
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According to this construction, rational numbers are decomposition classes M (∼ . The embedding ( : Z ( Q  of the ring Z into the field Q  is defined in the same way as in (10), so for each element  z ( Z by the formula 

( (z) = {
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; x( Z( {0}}.

Let us note that in practice the mentioned embedding is nearly always simplified by setting x = 1 in the definition ( (z); then e.g. ( (3) = 
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Similarly as with integers, we will distinguish one specific fraction from a rational number. Bold notation 
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 will denote the situation when the fraction represents a rational number, while ordinary notation 
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 will represent one specific fraction. Then e.g. 
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}. Let us note that in the following text, for the sake of simplification, we will denote rational numbers by bold letters, e.g. A, B, .... This notation is, same as with integers, not in contradiction with the given construction; it is always possible to switch to the representation with the help of ordered pairs, e.g. A = 
[image: image38.wmf]b

a

, B = 
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Theorem 6.7. The operation addition in the set of all rational numbers is commutative, associative, has an additive identity, for each rational number there is just one additive inverse and there hold group division rules. The algebraic structure (Q, +) is therefore a commutative group.

Proof: It is possible to prove by rearranging from the definition.
Note 6.8. In the group (Q, +) there hold analogic properties and relations as in the group     (Z, +), so it is not necessary to present them here again. Let us only note that a neutral element is the number 0 represented by the class 
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 and an additive inverse to the number 
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Note 6.9. Similarly as with integers, we can introduce the operation subtraction as adding an inverse additive, so A ( B = A + ((B). Thus, we can easily derive the commonly used formula for subtracting fractions: 
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Note 6.10. The operation subtraction has in the set of all rational numbers the same properties as in the set of all integers (i.e. it is neither commutative nor associative). 

Note 6.11. Now we will consider the operation multiplication in the set of all rational numbers. Let us remind the definition:  
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Theorem 6.12. The operation multiplication in the set Q is commutative, associative and has a multiplicative identity. This identity is number 1 represented by the class of fractions
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.  The algebraic structure (Q, () is a commutative monoid. Multiplication is distributive with regards to the operation addition in the set of all rational numbers.

Proof: It is possible to show by rearranging from the definition.
Note 6.13. If we examine also the existence of inversion elements and the validity of division rules with regards to multiplication in the set Q, we will easily discover that the only element, which does not enable the general application of these properties, is the number 0. After its removal from the set Q we can state the following theorem.

Theorem 6.14.  (1)  The algebraic structure (Q ( {0}, () is a commutative group. 

                   (2)  The algebraic structure (Q ,+, () is a commutative field.

Poof: Evident.               

Note 6.15. A multiplicative inversion to the rational number 
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. This number always exists unambiguously (b ( 0 according to the construction of rational numbers and a ( 0 according to the precondition of Note 6.6.), and is called a reciprocal number to the number 
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. When denoting a rational number A, the reciprocal number can be denoted A(1 and 
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 as well. Now we are prepared to define operation multiplication in the set Q ( {0} .

Definition 6.16. Division in the set Q ( {0} is defined as multiplication by a reciprocal number, i.e. A : B = A ( B(1 . If we combine the definition of multiplication and a reciprocal number, we will get
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Solved Example 6.17. There are given fractions 
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Solution:    
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Note 6.18. Let us remind again that the existence of the reciprocal number and the operation multiplication are indefinitely defined in the set Q ( {0}, so there cannot arise the situation that we have to “divide by a zero “. For operations division and multiplication there apply a number of properties, some of which will be given in the following theorem. Let us notice that they are instructions for the reduction of complex fractions. 

Theorem 6.19. Let A, B, C ( Q. Then:

(1)  (A(1)(1  = A;

(2)  (A ( B)(1 = A(1 ( B(1;
(3)  (A ( B(1)(1 = B ( A(1;
(4)  (A ( B(1) ( C (1 = A ( (B ( C)(1;
(5)  A ( (B ( C (1)(1 = (A ( C) ( B(1.
Proof: It can be easily proved according to the definition of multiplication in Q.

Solved Example 6.20. Prove that for each three rational numbers A, B, C there applies the equation (4) from the previous theorem, i.e. (A ( B(1) ( C (1 = A ( (B ( C)(1.
Solution: We will prove it by rearranging both sides of the given equality. We will use the standard representation of rational numbers A = 
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L = (A ( B(1) ( C (1 = 
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R = A ( (B ( C)(1 = 
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There holds L = R, so there also holds the equation that was being proved.

Ordering Relation in the Set of Rational Numbers
Definition 6.21. Let A = 
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 be a rational number. We will say that the number is positive and write A (  0, if and only if a and b are both either positive integers or both negative integers. If a = 0, then the number A = 0 ; in the remaining case (one of numbers a, b is a positive integer and the other is a negative integer) we will say that the rational number A is negative and we write A (  0. 
Note 6.22. It is evident that one of previous cases must always happen. Therefore, every rational number is either positive, or negative, or equals zero. Then there is a decomposition of the set of all rational numbers to positive numbers, a zero and negative numbers. In accordance with a familiar terminology, let us introduce the notation A ( 0 and say that the number A is non-positive, or in the case A (  0 this number is non-negative.

Definition 6.23. Let A, B be rational numbers. We will say that A (  B, if and only if there applies A ( B (  0. If A ( B = 0, then A = B ; in the remaining case for A ( B (  0 then there applies A ( B. 
Note 6.24. It is evident that in the previous definition one of previous cases must always happen. The ordering relation of all rational numbers is therefore linear. Also here we can generally use a non-strict inequality A (  B for the case A ( B (  0 and analogically A ( B for the case A ( B (  0.

Solved Example 6.25. Compare rational numbers 
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Solution: 
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; the difference of both numbers is a positive number, so 
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Note 6.26. For the ordering relation in the set of rational numbers and its connection with operations in the set Q  there apply similar formulas as in the set of all integers, as well as the similar definition of an absolute value of a rational number. With regards to the fact that      (Q ,+, () is a commutative field, it does not make sense to introduce the division with a remainder in the set of rational numbers. Nevertheless, there applies an interesting property of the ordering of rational numbers, which could not hold in the set of natural numbers.

Definition 6.27. The ordering relation in the set of rational numbers is densely ordered, it means
( x, y ( Q, x ( y; ( z( Q: x (  z (  y . 
Note 6.28. The definition of the dense ordering says that “it is possible to insert another rational number between each two different rational numbers”. From the theory of ordered sets then there applies that the ordered set Q does not have jumps. The explanation of this fact will be left to the theory of the real numbers construction.  
Decimal Expansion of Rational Numbers
Note 6.29. It is evident that rational numbers are not expressed only in the form of fractions, but we often see them expressed with the help of the decimal expansion. 

Theorem 6.30. Every rational number can be expressed with the help of the decimal expansion, while this decimal representation is either terminating, or it is recurring. It is a terminating one if and only if the given rational number is in the form 
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, i.e. if the prime decomposition of the denominator contains only prime numbers 2 or 5.

Proof: The outline of the proof. It suffices to realize how a fraction can be transformed to a decimal expansion. While dividing the numerator of the fraction by its denominator there can happen only two possibilities. The remainder is in the certain step equal zero, then the decimal expansion is terminating. If this case does not happen, the decimal expansion is non-terminating. As the number of all non-zero remainders cannot be greater than or equal to the denominator of the fraction, the remainders necessarily have to repeat from the certain step. If we further realize that a terminating decimal expansion is characteristic only of decimal fractions (their denominators are equal to powers of ten), there follows also a general form of denominators of fractions with a terminating decimal expansion. 

Definition 6.31. The fraction, the denominator of which equals to any power of ten (i.e. a fraction in the form of 
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), is called a decimal fraction. The rational number with a terminating decimal expansion is in the expanded form called a decimal number.
Note 6.32. The rational number in the form of a fraction is transformed to a decimal expansion by dividing a numerator by a denominator; the opposite transformation is performed either by the representation in the form of a decimal fraction and its following reduction (in the case of a finite expansion) or using the sum of convergent geometric progression.

Solved Example 6.33. Express recurring decimal 2,
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Solution: 2,
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In the convergent geometric progression the first term equals 0,7 and the scale factor is 0,1. 
Exercises for Check:

1. Compute: 
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Solution: 
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2. Compare complex fractions 
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Solution: We will transform complex fractions to simple ones 
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3. Let there be given two arbitrary rational numbers x, y with the property x (  y. Prove that for these two numbers and their arithmetic mean 
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Solution:  x(  y ( 2x(  x+ y (  x( 
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Let us note that the proved inequality x( 
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( y is a practical illustration of the ordering density in the set Q. 

4. Express recurring decimal 1,8
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 in the form of a fraction. 
Solution: 
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Terms to Remember:
· Embedding of an integral domain into a field
· Quotient field of the ring (Z, +, ()
· Construction of the set of rational numbers
· Operations with rational numbers
· Comparison of rational numbers
· Decimal expansions of rational numbers
· Recurring decimal
· Dense ordering of the set of rational numbers
Concept Questions:

1. What is the procedure when constructing the set of all rational numbers?
2. How is generally defined the commutative field (M, +, ()?

3. How do we perform operations with rational numbers?

4. How are defined positive and negative rational numbers?

5. How do we transform a recurring decimal to a fraction?

6. How can you explain the term dense ordering?

Notes and Comments:

7. Real Numbers
Study Guide: This chapter is devoted to the construction of real numbers and their basic properties. Although the set of rational numbers constructed in the previous chapter with operations addition and multiplication form a commutative field, still there are real situations which are not possible to be solved with the help of rational numbers (e.g. computing the length of the diagonal of the square with the side of the length one (its value is 
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). Therefore, it is necessary to construct such number set where will apply all calculating rules as in the set of all rational numbers, further, it will be possible to express the value of any root, exponential function, any logarithm, values of goniometric functions etc.; and finally, the no less important requirement – the set of all real numbers, which we will construct, has to include the set of all rational numbers. We will start with a general theory of Dedekind cuts which leads to the embedding of a linearly ordered set into its normal span. The general theory will be made specific in the way that the linearly ordered set of real numbers is the normal span of the linearly ordered set of rational numbers. Further, we will derive basic properties of real numbers and operations with them, including the possibility of their approximations. The chapter will be concluded with brief information about surdic numbers, algebraic and transcendent numbers. This introduction will be unusually finished with a prologue containing the proof that number
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 is not rational (this proof belongs to standard mathematical knowledge of secondary schools and university students) and further the proof that number log 7 is not rational either. Thus, we will prove that there really are numbers which are not rational. They are called irrational numbers. As a conclusion, let us note that a number of proofs in this chapter are not given because of their complexity, not even in the form of references.
Prologue 7.0.  a) Prove that
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We will proceed by reductio ad absurdum. Without detriment to generality, we can suppose that
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p

, where p, q are positive coprime integers. After simple equivalent modifications, we will obtain the notation p2 = 2q2  ((). The number p2 is even, so also the number p is even, and we write p=2r. After substituting to (() we will get 4r2 = 2q2, i.e. q2 = 2r2. In the same way as above, we will derive that q is even, so we will write q = 2s. Numbers p, q are both even, so they are divisible by two, which is in contradiction with the precondition that these numbers are coprime numbers. The precondition about the possibility of the notation 
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 therefore does not apply, so number
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 is irrational. 

                     b) Prove that log 7 ( Q .

We will proceed by reductio ad absurdum. Without detriment to generality, we can suppose that log 7 = 
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p

, where p, q are positive coprime integers. Now we will use the definition of the decimal logarithm and compute: log 7 = 
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= 7 ( 10 p = 7q , which is a contradiction, because 10 p is an even number, while 7q is an odd number. The prerequisite therefore does not apply and thus log 7 is an irrational number.

Note 7.1. As (Q ,+, () is a commutative field, i.e. from the structural point of view “the richest” structure, we cannot perform its “improvement”. Therefore, the construction of real numbers cannot be performed with the help of quotient structures; it is possible to prove that we cannot reach anything new by the construction of the quotient field of rational numbers. The field of real numbers must be constructed on a different basis. For this purpose, we can use ordered sets; either the theory of cuts originated by R. Dedekind or the theory of complete metric spaces. Here, we will use Dedekind cuts. Firstly, here is a brief theoretical survey.

General Theory
Definition 7.2. Let (E, ( ) be a linearly ordered set. A pair ( = (A, B), A ( E, B ( E is called the cut in the set E, if there applies:

(1) A ( B = E , A ( ∅, B ( ∅, 
(2) x( A ( y( B (  x(  y,

(3) A ( B = ∅. 
Note 7.3. The system {A, B} forms then the decomposition of the set E; The set A is the lower group of the cut ( and the set B is the upper group of the cut ( .
Note 7.4. (Types of cuts). Let ( = (A, B) be a cut in the set E. Then there can arise the following four cases:
The cut of the 1st type: The set A contains the maximal element and the set B does not contain the minimal element;

The cut of the 2nd type: The set A does not contain the maximal element and the set B contains the minimal element;

The cut of the 3rd type: The set A does not contain the maximal element and the set B does not contain the minimal element;

The cut of the 4th type: The set A contains the maximal element and the set B contains the minimal element;

As in essence, the cuts of the 1st and 2nd types describe the same situation, we will consider them equal. Therefore, every linearly ordered set can have only cuts of the 1st, 3rd and 4th types. 

Definition 7.5. The cut of the 3rd type from Note 7.4. is called a gap in the linearly ordered set; the cut of the 4th type from Note 7.4. is called a jump in the linearly ordered set.

Theorem 7.6. A linearly ordered set, which contains at least two elements, is densely ordered if and only if it does not have any jumps.
Proof: Not given here.

Illustration: 
a) the cut of the 1st type: E = Q; A = {x( Q:  x (  1}, B = {x( Q:  x (  1} ;

b) the cut of the 3rd type: E = Q; A = {x( Q:  x2 (  2}, B = {x( Q:  x2 (  2} ;
c) the cut of the 4th type: E = Z; A = {x( Z:  x (  1}, B = {x( Z:  x (  2} .
Definition 7.7. A linearly ordered set is called continuously ordered if there are neither jumps nor gaps.

Definition 7.8. Let (R, ( ), (S, ≼) be linearly ordered sets. The mapping f : R ( S is called the embedding of (R, ( ) into (S, ≼), if there holds:

(1) f is injective;

(2) ( x, y ( R: x (  y (  f(x) ≼  f(y). 
Sometimes this mapping f is called an isotonic mapping. We will say that the linearly ordered set (R, ( ) can in this case be embedded into the linearly ordered set (S, ≼). As (R, ( ) is linearly ordered, for the embedding f there also applies the opposite implication
( x, y ( R:  f(x) ≼ f( )y (  x (  y.
[image: image109.wmf]
The ordering ≼ on the set S is often denoted by the same symbol as the ordering (  on the set R. An element r ( R is usually identified with an element f(r). While such identification, the set R is then a subset of the set S. 
Theorem 7.9. Every linearly ordered set can be embedded into a linearly ordered set without gaps. 

Proof: See [9], pg. 51.

Theorem 7.10. Let (R, ( ) be a linearly ordered set. Let us denote S as the set of all cuts of the 1st and 3rd types in the set R. Let there be defined the ordering on S in the following way:

(  = (A, B), (  = (C, D), (, ( ( S:  (  ≼ ( ( A ( C.
Then S is a linearly ordered set which does not include gaps. 

Proof: See [9], pg. 51.

Definition 7.11. The linearly ordered set (S, ≼) from the previous theorem is called a normal span of the set (R, ( ).   
Note 7.12. If we identify elements of the set R with cuts of the 1st type in R, then the normal span of the set R consists of elements of the set R and gaps in R. 
Notation 7.13. Let (E, ( ) be a linearly ordered set. For each element m ( E we will denote its subset {x( E: x (  m} as (m]. 
Theorem 7.14. Let (R, ( ) be a linearly ordered set and let (S, ≼) be its normal span. Let us consider all cuts of the 1st type in the set R (according to Note 7.12. to each element r( R there is assigned just one cut of the 1st type where the element r is the maximal element of the lower group of the given cut). Let us denote ( = (A, B) an arbitrary cut of the 1st type in the set R, let r ( R be a maximal element of the set A. Let us now define the mapping f : R (  S as follows: Let for each element r( R its image be the cut f(r) in the set S which is defined as follows:

f(r) = ( (r],  R ( (r] ).
Then the mapping f : R (  S  is an embedding of (R, ( ) into (S, ≼). 

Proof: See [9], pg. 52.

Note 7.15. A mapping f is called a canonic embedding of the linearly ordered set (R, ( ) into its normal span.
Real Numbers
Note 7.16. From the theory of rational numbers we know that (Q,( ) is a linearly ordered set which does not have jumps (the ordering is dense). It is possible to prove easily that it contains gaps, e.g. definitely 
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 is the number which is not rational (it is not possible to express it in the form of a fraction), as we proved in the Prologue. 

Theorem 7.17. In the linearly ordered set (Q,( ) there exist only cuts of the 1st and 3rd types. The cuts of the 1st type correspond to rational numbers and the cuts of the 3rd type correspond to gaps in the ordered set (Q,( ). 

Proof: Evident.

Definition 7.18. The normal span of the linearly ordered set (Q,( ) is the linearly ordered set (R,( ). According to Theorem 7.10., the linearly ordered set (R,( ) does not contain gaps if there exist only cuts of the 1st type.

Theorem 7.19. 

(1) The linearly ordered set (R, ( ) is continuously ordered (it does not contain gaps).

(2) ( x, y ( R, x (  y; ( z( Q: x (  z (  y . 
Proof: See [9], pg. 54.

Definition 7.20. In the ordered set (Q,( ) the cuts of the 1st type correspond to rational numbers and the cuts of the 3rd type (i.e. gaps) correspond to irrational numbers. Therefore, each gap in the ordered set (Q, ( ) determines just one irrational number. If we denote the set of all irrational numbers I , then R = Q ( I . 

Note 7.21. As the linearly ordered set (R,( ) does not contain gaps, it is possible to state that each point of the real line is an image of just one real number and vice versa, every real number can be unambiguously represented on the real line. The given facts result also from axioms of continuity, known from the axiomatic theory of the geometry design. There are two axioms, Archimedes´ and Cantor´s axioms. Especially, Cantor´s axiom, which states that the intersection of inserted line segments is non-empty, considerably contributes to the concept of real numbers images on the real line.
Ordering in the Set of Real Numbers
Note 7.22. Let us remind that real numbers are the union of rational cuts of the 1st and 3rd types, i.e. every real number is the rational cut. In the case of the cut of the 1st type it is the rational number, in the case of the cut of the 3rd type it is the irrational number. 

Definition 7.23. Let ( =(A, B), ( =(C, D) be the cuts in the set Q (i.e. two real numbers). Then: 

( ( (  (  A (  C .
Definition 7.24. Let Q+ = {r( Q: r (  0}, i.e. Q+ denotes the set of all positive rational numbers. Then the cut (Q ( Q+, Q+) is a real number which we denote by the symbol 0 and call it a zero. A number a ( R is positive if a (  0, the number a ( R is negative if a (  0. 
Operations in the Set of Real Numbers
Definition 7.25. Let a = (A, B), b = (C, D) be arbitrary real numbers. Let us now set 

C2 = {( + ( ; ( ( B, ( ( D}, C1 = Q ( C2. Then C = (C1, C2) is a real number which we will call a sum of real numbers a, b and denote it a + b. 
Theorem 7.26. Let a, b, c, be arbitrary real numbers. Then there holds a ( b. Then there also holds the inequality a + c (  b + c . (The ordering of real numbers is monotonous with respect to addition). 

Proof: It is not given here.
Theorem 7.27. The operation addition in the set of all real numbers is commutative, associative, has an additive identity and there apply group division rules (the equation a + x = b has a solution for arbitrary real numbers a, b). The algebraic structure (R, +) is a commutative group. 

Proof: It is not given here.
Definition 7.28. From the previous theorem there applies that the equation a + x = b has a solution for arbitrary real numbers a, b. This solution is in the form x = b ( a and we will call it the difference of real numbers a, b. The corresponding operation is called subtraction of real numbers. 

Definition 7.29. Let a = (A, B), b = (C, D) be arbitrary real numbers. Let us now set:

C2 = {( (( ; ( ( B, ( ( D}, C1 = Q ( C2. Then C = (C1, C2) is a real number which we will call the product of real numbers a, b and denote a (b. 
Theorem 7.30. Let a, b, c, be any real numbers. Then:

(1) (( a) ( b = a ( (( b) = ( (a ( b); 

(2) (( a) ( (( b) = a ( b ;
(3) a ( b = 0 if and only if a = 0 or b = 0. 
Proof: It is not given here.
Theorem 7.31. 

(1) The algebraic structure (R ( {0}, () is a commutative group. 

(2) The algebraic structure (R ,+, () is a commutative field.

Proof: It is not given here.
Theorem 7.32. (Theorem about a supremum and infimum) Let M be an arbitrary non-empty subset of the set of real numbers.  Then:

(1) If M is bounded from below, then there exists infR M ;

(2) If M is bounded from above, then there exists supR M.
Proof: It is not given here, as it is the part of mathematical analysis curriculum.
Theorem 7.33.  (Embedding of rational numbers into real numbers)

Let a ( Q. Let us denote Ra  = {x( R: x (  a}.  Then the mapping f: Q ( R defined by the formula
f(a) = (Ra , R ( Ra ) 
is isomorphic to the embedding of the linearly ordered set Q to the linearly ordered set R. 

Proof: It is the corollary of Theorem 7. 14. for the special case R = Q, S = R . 

Note 7.34. The following definitions are familiar from mathematical analysis:

(1) The progression 
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 is a Cauchy one if for each ( ( 0 there exists a natural number n0 such that for each pair of natural numbers m, n (  n0 there applies 
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(2) The progression 
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 is convergent with the limit L, if for each ( ( 0 there exists a natural number n0 such that for each natural number n (  n0 there applies 
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It is evident that every convergent progression is a Cauchy one, while the opposite statement does not generally hold. Nevertheless, in the metric space R every Cauchy progression is convergent, which means that R is a complete (or Cauchy) metric space. We can use this theory of complete spaces for the construction of the field of real numbers instead of the theory of cuts. Now there are several didactic notes. The following one is adopted from [3], pp. 90 – 92.

Note 7.35. Already at the secondary school, students meet the proof that number
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 cannot be expressed in the form of a fraction, i.e. that except for the rational numbers there are also irrational numbers, while almost all roots, values of goniometric functions, logarithms etc. are irrational numbers. However, students mostly lack visual geometric concepts; it is difficult for them to distinguish terms like gap and jump on the real line. But genuinely, these terms, familiar already from the medieval mathematics, are essential for proper understanding of the concept of real numbers. Let us now show two models of real numbers, the arithmetic and geometric ones. Both of them are being introduced to a basic school pupil. The arithmetic model is the set of all numbers, and the geometric model is the real line. The isomorphism of both models makes it possible not to distinguish between the number and its image on the real line. The arithmetic model is more frequent; on the other hand the geometric model is more illustrative and for the introduction of real numbers at basic schools is more suitable. 

The set R is: 

· ordered, i.e. for each two x, y ( R there will happen just one of the cases                         x(  y, x = y, x ( y; 

· dense, i.e. ( x, y ( R, x (  y, ( z ( R: x (  z ( y;
· Archimedean, i.e.( x, y ( R, 0 (  x (  y, ( n ( N: x(n ( 1) (  y (  xn;

· continuous, i.e. each non-empty set M  (  R , which is bounded from above, has a supremum.

The geometric model can express the above mentioned four statements in a more illustrative way:

· If X, Y are two points on a real line o, there happens just one of the cases: X = Y, X lies to the left of Y, Y lies to the left of X.

· Between every two different points there is a point.

· If B is an inner point of the line segment AX and if we construct on the half line AX a sequence of points B1 = B, B2, B3, ... so that successively we mark out the line segment AB (so the line segment ABn is a n-multiple of the line segment AB), then after the certain number of steps we will exceed the point X (the point X will be an element of a certain line segment Bk-1Bk).

· On the real line there are no jumps (gaps).

The arithmetic model of the set R is less illustrative, but we can perform there all arithmetic operations and easily distinguish between a rational and irrational numbers.

Note 7.36. In the previous text we dealt with operations with real numbers in general. Now we should remind some rules for calculating with powers and roots, familiar already from the secondary school.

Let m, n ( Q , x, y ( R. Then: 

xm ( ym = (xy)m,         xm ( xn = xm+ n,        (xm)n = xm n,       
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We know that powers with a rational exponent can be expressed with the help of roots, i.e.   
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We will show their application in following examples.

Solved Example 7.37. Calculate 
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Solved Example 7.38. Let x( R, x (  0, x ( 1. Simplify the expression 
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Solution: 
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From the History to the Present 

Note 7.39. The problem, how to prove the existence of the irrational numbers, is quite old. Already in the Ancient Greece there was the first crisis of mathematical thinking which dealt with “the incommensurability of line segments”. In mathematics at that time, rational numbers were known, as well as the fact that any rational number can be represented on the real line by a precise geometric construction, Together with the awareness of the density of the rational numbers ordering there was generally accepted the idea that there are no other numbers than the rational ones, that every number can be represented by a fraction, and that every point of the real line is the image of some rational number. The discovery of the fact that in any square there applies that its side and diagonal are incommensurable, and that the length of the diagonal cannot be expressed by a fraction (if the side of the square is of the length a, the diagonal is of the length
[image: image136.wmf]2

a), caused literally an upheaval in that time, because nobody knew how to solve the incurred problem. Now from the theory, we know that the principle of incommensurability means that a linearly ordered set of rational numbers contains gaps. The problem of incommensurability, i.e. the introduction of irrational numbers, could be successfully solved much later, after the recognition of an actual infinity in the work of Bernard Bolzano. 

Let us now remind Cantor´s axiom of continuity known from geometry. According to it, the intersection of inserted line segments is non-empty. After the recognition of the actual infinity and with that connected limit processes into mathematics, it is possible to prove that if there is an infinite number of inserted line segments, the intersection is only a one-element set. With the infinite number of inserted line segments on the real line the intersection is the only one number. Therefore it is possible to define every irrational number which is a gap on the real line (rational cut of the 3rd type) as an intersection of infinitely many inserted line segments on the real line. Left boundary points of these line segments form an increasing sequence of rational numbers which is bounded from above, so it has to have a limit. Analogically, right boundary points form a decreasing sequence of rational numbers which is bounded form below and it also has to have a limit. Both these limits are equal and their value is the desired irrational number. Let us give two examples:

a) Let (A, B),  A = {x( Q:  x2 (  2}, B = {x( Q:  x2 (  2} be the cut of the 3rd type in the set Q. We will successively chose numbers from the set A and B so that numbers from the set A form an increasing sequence and numbers from the set B a decreasing sequence. These pairs of numbers will be the boundary points of inserted intervals with which we will gradually approximate more precisely the value of the chosen gap (the cut of the 3rd type).

       12 = 1;                                 22 = 4,                             so                   1 (  
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       (1,4)2 = 1,96;                      (1,5)2 = 2,25 ,                  so               1,4 (  
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       (1,41)2 = 1,9881;                (1,42)2 = 2,0164 ,            so             1,41 (  
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       (1,414)2 = 1,999396;          (1,415)2 = 2,002225 ,      so           1,414 (  
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       (1,4141)2 = 1,99967881;    (1,4143)2 = 2,00024449 ,so         1,4141 (  
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etc.

The shown process of approximation is infinite and number
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is thus gradually being determined with higher and higher accuracy. When calculating in practice, we will be content with the accuracy which will be sufficient for solving the given mathematical problem (we cannot deal with the theory of imprecise numbers due to the extent of the text, but it can be found in the book by M. Kopecký [8], pg. 52 - 54). Let us only note that from the general theory of absolute and relative errors, while calculating with imprecise numbers there results the necessity of the rationalisation, i.e. removing irrational numbers from denominators of fractions (we carry it out by a suitable expansion of the whole fraction). In practice, it is definitely more precise to calculate with number 
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. How we do it can be seen as follows:
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; thus the resulting fraction does not contain the root in the denominator.

b) The process of gradual approximation can be programmed. The example of such approximation can be the determination of Euler´s number e. We know that 2 (  e (  4 . Further, from mathematical analysis we know that there applies: 
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is increasing with the first element 2, the second of these sequences 
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is decreasing with the first element 4. Generally, we can approximate Euler´s number for n ( N  with the help of inequalities
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Final Notes to Real Numbers
A) Surdic Expressions
Note 7.40. Surdic expressions are real numbers in the form a 
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, where a, b are non- negative rational numbers, b is not a second power of any rational number. This topic is quite old – the formulas for simplifying surdic expressions were already known in the 12th century to an Indian mathematician Bháskara. For simplifying surdic expressions there apply the following relations: (let us assume that a (
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With the help of these two relations, some expressions with roots will nearly “miraculously” modify, e.g. the relation 
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. Here a = 3, b = 8, according to the first formula the result is 2. This way we can modify also powers of higher values, e.g. 
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Note 7.41. Now we will devote ourselves to the modification of the expression X = 
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is a rational number, then after raising the expression X to the third power and modification, we can write X3=2b(3
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X, which is the equation from which we can calculate the value of X. For example, in the expression 
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there applies that a = 5, b = 2. The equation is then in the form X3 =4( 3X, from which one root X = 1 is immediately evident, including the fact that other real solutions do not exist. Let us add that similar analysis can be done also when in the expression X there is minus between the roots.

Solved Example 7.42. Simplify roots 
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Solution: These are surdic expressions for which according to the previous text there applies  a = 7, b = 13. There also applies 
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B) Algebraic and Transcendent Numbers
Definition 7.43. An algebraic number is a real number which is the root of a polynomial with rational coefficients. From the set of all polynomials, whose root is the given algebraic number, we will chose the polynomial with the lowest degree. This degree is also the degree of this algebraic number. 

Note 7.44. Every rational number is algebraic. Also, a number of irrational numbers are algebraic ones. For example, number
[image: image177.wmf]2

is algebraic because it is the root of the equation x2−2 = 0. From the algebraic and geometric knowledge there follows that with the help of a drawing compass and ruler (without a scale) it is possible to construct just those line segments, the lengths of which are algebraic numbers of the degree two power. From this there follow the insolubility of some geometric tasks like the quadrature of a circle, the trisection of an angle or the duplication of a cube (three classical mathematical problems).
Theorem 7.45. 

(1) Let us denote A the set of all algebraic numbers. Then (A ,+, () is a commutative field.

(2) The roots of the polynomial, whose coefficients are algebraic numbers, are again algebraic numbers.
Proof: It is not given here.
Definition 7.46. A transcendent number is a real number which is not the root of any algebraic number with rational coefficients.

Note 7.47. (See [3]) The proof of the existence of transcendent numbers was introduced in 1844 by a French mathematician Joseph Liouville. It is apparent that transcendent numbers must be irrational, their irrationality is of a “different type” than e.g. of surdic numbers, which are algebraic. Although the existence of transcendent numbers was known since 1840, for years it was not possible to prove the transcendetality of two significant irrational numbers, π and e. Only in 1873 Hermite proved the transcendentality of the number e and in 1882 Ferdinand von Lindemann proved the transcendentality of the number π. 
Note 7.48. It is possible to prove that in certain sense all irrational numbers are transcendent. In order to get at least a general concept of transcendent numbers, let us present the result which was proved in 1934 by Gelfand and Schneider. (See [2], pg. 100).

Theorem 7.49. Let ( , ( be algebraic real numbers, let (  be a rational number and let           ( ( 0,  (  ( 1. Then all numbers in the form ( (  are transcendent. 

Proof: It is not given here.
Note 7.50. According to the previous Theorem 7.49., among transcendent numbers belong for example numbers 
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Exercises for Check: 

1. Calculate 
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[image: image180.wmf]2

1

. 
2. Calculate 
[image: image181.wmf]3

4

3

2

8

1

4

1

3

2

1

3

1

8

2

4

2

:

)

4

25

(

)

8

10

(

×

×

×

×

-

-

-

 ;

Solution:  
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3. Let a( R, a (  .0. Simplify the expression 
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Solution:  
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4. Calculate: 
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Solution: It is possible to simplify directly or use the result from Exercise 7.42; the result is 
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Note 7.51. The final note deals with the use of calculators or PC when calculating the results. From exercises 1 and 4 we can see that in practical situations it is useful to modify primarily expressions with roots or powers with a rational exponent and then use the result, instead of counting the result immediately from the task (this tendency could be seen even at pupils of basic schools). When counting the expression from exercise 1 we would not get exactly 0,5 using the calculator, the same in exercise 4 we would not get exactly 
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Terms to Remember:
· Proof of statement 
[image: image188.wmf]2

( Q
· Cut in a linearly ordered set
· Gap and jump in a linearly ordered set
· Normal span of a linearly ordered set
· Operations with real numbers
· Ordering of the set R, continuity of the real line
· Approximation of real numbers
· Algebraic and transcendent numbers
Concept Questions:

1. What types of cuts are there in a linearly ordered set?

2. What is the definition of the continuous ordering of linearly ordered sets?

3. How do you imagine the notions gap and jump in the linearly ordered set?

4. How do you express the theorem about a supremum and infimum?

5. How is defined an inequality between two real numbers?

6. How do we approximately determine the value of an irrational number?

7. What is the form of surdic numbers and how can they be simplified?

Notes and Comments:

8. Complex Numbers

Study Guide: The last unit of our text is devoted to complex numbers. The set of complex numbers is not constructed with the help of quotient strictures, but very easily as the Cartesian product R( R. First of all we will derive the properties of operations with complex numbers, and then successively we will introduce an imaginary unit, algebraic and trigonometric forms of a complex number and its absolute value. In the conclusion we will deal with raising complex numbers to power and solving Binomial equations. Due to the extent of the text we are not able to discuss the usage of complex numbers in practice, e.g. in physics, geometry etc. 

Theorem 8.1. The field of all real numbers can be embedded into the field in which the equation x2 + 1 = 0 has a solution.

Proof: See [9], pg. 66.
Note 8.2. The proof is a constructive one. We will describe the construction of this field. Let us denote C the Cartesian product R ( R , i.e. C = R ( R = {[a, b]; a ( R, b ( R}. Let us define on the set C the operations addition and multiplication as follows:

[a, b] + [c, d] = [a + c, b + d] ,

[a, b]  ( [c, d] = [ac ( bd, ad + bc].
It is possible to show that (C ,+, () is a field. The neutral element with regard to operation addition is [0, 0], the neutral element with regard to operation multiplication is [1, 0]; the opposite element to an element [a, b] is the pair [(a, (b], the reciprocal element to an element [a, b], where a2 + b2 (  0, is the ordered pair 
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. There applies     [0, 1] ( [0, 1] = [( 1, 0], i.e. [0, 1] 2+ [1, 0] = [0, 0] . Let now f: R (  C be a mapping defined for every real number r ( R by the formula f(r) = [r, 0]. Then f is an embedding of the field (R ,+, () into the field (C ,+, (). 
Definition 8.3. The field (C ,+, () is called the field of complex numbers. The embedding f will be called a canonic embedding of the field R into C . 

Note 8.4. From the previous definition there applies that the equation A+ X = B has in the set of complex numbers always an unambiguous solution X = B( A and also the equation            A ( X = B under the condition A ( [0, 0] has in the set of complex numbers an unambiguous solution X = 
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. In the set of complex numbers it is thus possible to subtract and divide without limits (except for „dividing by zero“). We can easily derive the appropriate formulas: 

[a, b] ( [c, d] = [a ( c, b ( d] ,


[image: image191.wmf][

]

[

]

ú

û

ù

ê

ë

é

+

-

+

+

=

2

2

2

2

d

c

ad

bc

,

d

c

bd

ac

d

,

c

b

,

a

,  [c, d] ( 0. 
Note 8.5. With respect to note 8.2. it is possible to identify every real number r with a complex number [r, 0]. The notation [0, 1] 2+ [1, 0] = [0, 0] therefore really means that the equation x2 + 1 = 0 has a solution in the set of complex numbers. This solution is a complex number [0, 1]. This number cannot be a real one we introduce for it the symbol i and call it an imaginary unit. As according to the definition of both operations addition and multiplication is possible to express each complex number [a, b] in the form [a, b] = [a, 0]+ [0, b] = [a, 0] + [b, 0] ([0, 1] , it is possible to use the notation [a, b] = a + bi. 
Definition 8.6. The notation ( = a + bi is called an algebraic form of a complex number        ( = [a, b]. The number a is called a real part of the complex number ( , the number b is called an imaginary part of the complex number (. . If a = 0, we will say that number ( is purely imaginary. The real part of the complex number ( is sometimes denoted Re(, the imaginary part of the complex number ( is sometimes denoted Im(.
Note 8.7. With respect to the equality i2 = (1, for powers of the number i there apply following relations: 

i n = i for n ( 1 (mod 4), 

i n = (1 for n ( 2 (mod 4),

i n =( i for n ( 3 (mod 4),

i n = 1 for n ( 0 (mod 4).
In the algebraic form we can write all four basic operations as follows:

(a + bi) + (c + di) = (a + c) + (b + d)i ,

(a + bi) ( (c + di) = (a ( c) + (b ( d)i ,

(a + bi) ( (c + di) = (ac ( bd) + (ad + bc)i,
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Theorem 8.8. In the set of all complex numbers C there does not exist the ordering relation.

Proof: See [9], pg. 68.
Definition 8.9. Let ( = a + bi be a complex number. Then a complex number 
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 = a ( bi is called the complex conjugate of the number ( . A non-negative real number 
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 is called an absolute value of the complex number ( . 

Theorem 8.10. Let ( , (  be complex numbers, then there holds:
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Proof: See [9], pg. 69. It is possible to prove by rearranging from the definition.
Solved Example 8.11. There are given complex numbers 3( 4i , 6+ 3i. Determine their addition, difference, product and quotient. Further determine the absolute value of each of these numbers. 

Solution:  (3 ( 4i) + (6 + 3i) = 9( i ,

              (3 ( 4i) ( (6 + 3i) = (3 ( 7i ,

              (3 ( 4i) ( (6 + 3i) = 30 ( 15i,
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Note 8.12. We already know that in the set of all complex numbers we can perform all four basic operations, addition, subtraction, multiplication and division (except for dividing by zero). Now we will deal with powers and roots of complex numbers. To be able to do this, we have to introduce a more suitable expression of the complex number than an algebraic form. If we represent each complex number a+ bi geometrically in the Gauss plane, its image will be placed in the point with coordinates [a, b]. From mathematical analysis it is known that we can express the position of this point with the help of polar coordinates. In these coordinates the Cartesian projections to axes x, y is replaced by the distance of this point from the zero point (origin of the coordinate system) and an oriented angle subtended between the positive real axis x and the line segment appointed by the given point and zero. If we express a complex number this way, we say that we expressed it in the trigonometric form. The complex number ( = a+ bi is therefore expressed in the trigonometric form                            ( = r(cos ( + i sin (). In this form, r = 
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 and the ( can be determined when we know a, b and we know how to introduce goniometric functions with the help of the unit circle.

Solved Example 8.13. Express in the goniometric form complex numbers                 a)
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Solution: a)
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; the angle ( lies in the second quadrant, the basic angle is expressed by the ratio sin (0 =
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b) 1+ i =
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; the angle ( lies in the first quadrant, the basic angle is expressed by the ratio sin (0 = 
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Theorem 8.14. Let ( = r(cos ( + i sin (), ( = s(cos ( + i sin (), ( ( 0 be complex numbers. Then there applies:

(1) ( ( ( = rs(cos (( +() + i sin (( +()),

(2) 
[image: image225.wmf]))

(

sin

i

)

(

(cos

s

r

y

j

y

j

b

a

-

+

-

=

. 

Proof: See [9], pg. 70.
Note 8.15. For an arbitrary complex number there exists its n-th root. If the given number is expressed in an algebraic form, it is possible to use the binomial theorem, where we transform the powers of the number i according to the note 8.7. If it is in the trigonometric form, we will use De Moivre´s theorem. This method is usually easier to perform.

Theorem 8.16. (De Moivre´s theorem). Let ( = r(cos ( + i sin () be an arbitrary complex number, let n ( N. Then there applies:

(n  = rn(cos n( + i sin n(). 

Proof: See [9], pg. 70.
Note 8.17. Now let us consider the roots of complex numbers. As in the set C there is not an ordering relation, it does not make sense to consider positive and negative complex numbers, so for every n ( N there is an n-th root of the complex number (. Let us denote this root z , then there applies z = 
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, so zn = (. The last equation is a binomial equation, the solution of which is familiar. We even know that this equation has n solutions, because the field of complex numbers is algebraically closed. Then altogether there exist n roots of n-th order of the complex number (. 

Theorem 8.18. Let there be given a binomial equation zn = (.. If the number ( is expressed in the trigonometric form as ( = r(cos ( + i sin (), then the solution of the given equation is:
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Proof: See [12], pg. 71.

Note 8.19. According to the fundamental theorem of algebra, the field of complex numbers is algebraically closed, so every algebraic equation of degree n in the set of complex numbers has just n roots (f we count every root as many times as is its multiplicity). According to theorem 8.18 the binomial equation zn = ( really has just n roots. Their images in the Gauss plane form vertexes of a regular n-sided polygon.
Solved Example 8.20. Calculate: (
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Solution: 
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= 256 (cos 120( + i sin 120() = ( 128 + 128 
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Solved Example 8.21. Solve the binomial equation x5 = (1. 

Solution: There holds (1 = 1.(cos ( + i (). According to the notation of theorem 8.18 r = 1, ( = (,  n = 5, k ( {0, 1, 2, 3, 4}. The general formula, into which we will substitute, is then given by theorem 8.18.
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Note 8.22. It is possible to determine the roots of complex numbers and solve equations and inequalities by a substitution method. Let us denote the unknown complex number z as x + iy, where x, y are real numbers. After substitution, rearranging and comparing the real and imaginary parts of the left and right side, we will get a system of two equations or inequalities in the real set. Nevertheless, this method is quite laborious and only rarely is suitable. Let us demonstrate one example.

Solved Example 8.23. Calculate 
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Solution: Let us denote z = 
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, then  z2 = 5 ( 12i. Let z = x + iy. After substitution we get (x + iy)2 = 5 ( 12i, after rearranging x2 + 2ixy ( y2 = 5 ( 12i. In the last equation we will compare real and imaginary parts of both sides and get a system of equations in the real set
x2 ( y2 = 5  ,

         2xy  =  ( 12 .
After substitution from the second equation to the first one we will get the equation               x4 ( 5 x2( 36, from which either x2 = 9 or x2 = (4. Evidently, the negative root does not satisfy, so from the first solution we get x = ( 3, and finally y = 
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. The solution is then      z1 = 3 ( 2i, z2 = ( 3 + 2i. 
Note 8.24. Through successive constructing individual number sets from the semi-ring of natural numbers to the field of complex numbers, we achieved the structure which is „the richest“ from the algebraic point of view Although in C there is no ordering, we can perform here all four basic operations (except for division by zero) and for every complex number there exists also its power and root of an arbitrary order. The field of complex numbers is algebraically closed, so every n order polynomial has in C exactly n roots (if we count each root with its multiplicity). Therefore for the practical reason, there is no point in examining possibilities of enlarging the field of complex numbers. Although there exists its enlargement to the field of quaternions, it is not useful to deal with this topic here. 
Exercises for Check.

1. Calculate a) 
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Solution: a) 2 , b) 1 + 8i

2. Calculate 
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Solution: 
[image: image248.wmf]3

5

 . 

3. Transform to the algebraic form: a) cos
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 , b) 5 (cos 11( + i sin 11(). 
Solution: a) i , b) (5 . 

4. Calculate: a) (1 + i)6, b) 
[image: image251.wmf]i

4

3

-


Solution: a) (8i, b) 2( i or (2 + i . 
5. Solve the binomial equation: x6 = 1 . 
Solution: 
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x3,4 = ( 
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Terms to Remember:
· Construction of the set of complex numbers
· Imaginary unit
· Algebraic and trigonometric form of a complex number
· Absolute value of a complex number
· Complex conjugate
· Operations with complex numbers
· De Moivre´s theorem
· Binomial equation
Concept Questions:

1. How would you motivate the introduction of complex numbers?

2. How do we transform an algebraic form of the complex number to a trigonometric one and vice versa?

3. How is the division of complex numbers performed?

4. What can you say about the ordering relation of the set of complex numbers?

5. How do we raise complex numbers to a higher power? 

6. How can we determine the root of the complex number?

7. How is the solution of a binomial equation connected with the images of its solution in the Gauss plane?

Notes and Comments:
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